View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Document Classification Using Background Smoothing

      Klasifikasi Dokumen Menggunakan Background Smoothing

      Thumbnail
      View/Open
      Fulltext (738.1Kb)
      Abstract (367.9Kb)
      BAB I (384.8Kb)
      BAB II (471.5Kb)
      BAB III (427.9Kb)
      BAB IV (560.9Kb)
      BAB V (485.2Kb)
      Cover (329.8Kb)
      Daftar Pustaka (400.5Kb)
      Lampiran (432.3Kb)
      Date
      2010
      Author
      Pramurjadi, Andy
      Adisantoso, Julio
      Metadata
      Show full item record
      Abstract
      Naïve Bayes Classifier (NBC) is one of the methods for text or document classification. A common problem that often occurs on NBC method is data sparsity, especially when the size of training data is too small. One way to handle the sparsity problem is to use background smoothing technique. The aims of this research are to look at the background smoothing effect on short and long query, and to compare it with NBC on small training data. In this research, we use documents from the Agricultural Research Journal of horticultural domain. The results indicate that the accuracy of document classification on NBC+Background Smoothing is 92.3%, not significantly different from that obtained using only NBC. Improvement of the accuracy is only 1.78% from the results obtained on NBC. However, the results of the classification with NBC+Background Smoothing has been able to properly classify documents of Agriculture Research Journal at horticultural domain, so that it can be used to organize documents much easier for users to find information related to the documents.
      URI
      http://repository.ipb.ac.id/handle/123456789/61734
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository