View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis dan Implementasi Algoritme Advanced Encryption Standard (AES) Secara Paralel

      Thumbnail
      View/Open
      Full text (3.241Mb)
      Abstrak (371.4Kb)
      BAB I (378.2Kb)
      BAB II (880.0Kb)
      BAB III (615.8Kb)
      BAB IV (2.075Mb)
      BAB V (463.6Kb)
      Cover (454.4Kb)
      Lampiran (1.035Mb)
      Date
      2012
      Author
      Zulfikar, Sayed
      Rahmawan,Hendra
      Giri, Endang Purnama
      Metadata
      Show full item record
      Abstract
      AES is an algorithm for symmetric key cryptography. AES is expected to replace Data Encryption Standard (DES) as a recognized standard for various applications. The complexity of AES encryption and decryption process is O(n), it has fast computation in both encryption and decryption but its execution time will increase as the input data increase. In this research the AES algorithm would be parallelized by dividing the data to each processor (domain decomposition) and by dividing the constituent computing of AES to each processor (functional decomposition), and their performance would be analyzed. Parallel implementation of AES algorithm uses Message Passing Interface (MPI). The objectives of this research are to measure and analyze the performance of parallel AES algorithm using performance metrics. The best result of the parallel AES algorithm in this research is in the decryption process using domain decomposition method. A file with 118.525 MB size has 127.227 seconds decryption execution time using sequential AES algorithm, whereas using 16 processors, its decryption execution time is 34.896 seconds. The speedup is 3.646 and the efficiency is 0.228. This result is not good enough because the speedup is not equal to the number of processors used and the efficiency is below one. This is because the AES decryption in this research has a fast computational process, yet it has a big overhead for data communication. The worst result of the parallel AES algorithm is in the decryption process using functional decomposition method. Using the same file and three processors, the decryption execution time is 168.089 seconds. The speedup is 0.755 and the efficiency is 0.252. This is due to the fact that computing process decomposition is not equally distributed among the processes and the use of MPI blocking communication routine which cause a big overhead for data communication. Both parallel algorithms used in this research are not cost-optimal
      URI
      http://repository.ipb.ac.id/handle/123456789/54806
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository