View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Regresi Laten Pada Efek Plasebo

      Latent Regression Model on Placebo Effect.

      Thumbnail
      View/Open
      Full text (862.6Kb)
      Date
      2011
      Author
      Purwandari, Diana
      Nugrahani, Endar H.
      Ardana, Ngakan Komang Kutha
      Metadata
      Show full item record
      Abstract
      Regression analysis models the relationship between response variables with one or more predictor variables. The complexity of the analysis will increase, when it involves latent predictors, which are unobserved. Regression model with latent predictor is called latent regression model. Latent regression model has an important role in data modelling with latent variables, such as placebo effect in healing of depression. In this latent regression model, the latent predictor is assumed to be continue and is estimated by using beta distribution. The parameters of the model are estimated by EM (Expectation-Maximization) algorithm. This algorithm is implemented using R 2.13.1 software. The result of data analysis of a placebo effect research on the healing of depression shows a high level of concordance.
       
      Analisis regresi mempelajari bentuk hubungan antara peubah respons dengan satu atau lebih peubah prediktor. Analisis akan bertambah kompleks ketika melibatkan prediktor laten, yaitu peubah yang tidak teramati. Model regresi dengan prediktor laten disebut model regresi laten. Model regresi laten memainkan peran penting dalam pemodelan data dengan peubah laten, misalnya efek plasebo pada penyembuhan depresi. Pada model regresi laten ini, prediktor laten diasumsikan kontinu dan diduga menggunakan distribusi beta. Parameter model diduga dengan algoritma EM (Expectation-Maximization). Implementasi model dilakukan dengan menggunakan software R 2.13.1. Hasil analisis data suatu penelitian efek plasebo pada penyembuhan depresi menunjukkan tingkat kesesuaian yang tinggi.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/54172
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository