View Item 
      •   IPB Repository
      • IPBana
      • Published by Others
      • Faculty of Mathematics and Natural Sciences
      • View Item
      •   IPB Repository
      • IPBana
      • Published by Others
      • Faculty of Mathematics and Natural Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Enhanced Chlorella vulgaris Buitenzorg growth by Photon Flux Density Alteration in Serial Bubble Column Photobioreactors

      Thumbnail
      View/Open
      Publications (197.2Kb)
      Date
      2007
      Author
      Witarto, Arief Budi
      Metadata
      Show full item record
      Abstract
      Micro algae are photolitotrophs that perform oxygenic photosynthesis and capable of accumulating a large amount of CO2, using an inducible CO2 concentrating mechanism (CCM). These characteristics make the micro algae potentially useful for removal and utilization of CO2 emitted from industrial plant. Generally, the usage of photosynthetic microorganism in CO2 fixation and biomass production for the economically viable commodities have been increased and significantly improved as a solution for this problem. Using these facts and previous research results using Anabaena cylindrica IAM M1 and Spirulina platensis IAM M 135, enhancement of CO2 fixation and biomass production by Chlorella vulgaris Buitenzorg with photon flux density alteration along with an increasing of culture biomass during the cellular growth period, was implemented in this research. The photon flux density used in this alteration was the maximum light for Chlorella’s maximum growth rate ( Immax,opt ). The cultivation of Chlorella vulgaris Buitenzorg in the Benneck basal medium operating conditions: T, 29oC; P, 1.0 atm; UG, 2.4m/h; CO2, 10%; using Philip Halogen Lamp 20W/12V/50Hz as the light source and three bubble column photobioreactors arranged in series order with each having a volume of 0.200dm3. Results had shown that the photon flux density alteration as a whole could increase around 60% the biomass production of Chlorella vulgaris and around 7% the CO2 fixation ability, compared to constant photon flux density outcomes. This experiment also showed that the noncompetitive inhibition of [HCO3 -] as carbon source substrate is affected significantly during the cultivation in both of alteration and continuous photon flux density.
      URI
      http://repository.ipb.ac.id/handle/123456789/28539
      Collections
      • Faculty of Mathematics and Natural Sciences [471]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository