View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritme K-Prototypes untuk Segmentasi Mahasiswa Baru Program Sarjana IPB University Tahun 2024 Berdasarkan Karakteristiknya

      Thumbnail
      View/Open
      Cover (587.1Kb)
      Fulltext (1.471Mb)
      Lampiran (483.3Kb)
      Date
      2025
      Author
      PRATIWI, OKTAVIA GALIH
      Soleh, Agus Mohamad
      Dito, Gerry Alfa
      Metadata
      Show full item record
      Abstract
      IPB University setiap tahun menerima mahasiswa baru dari latar belakang beragam sehingga muncul tantangan dalam penyediaan layanan yang adil dan tepat sasaran. Salah satu pendekatan untuk mengatasi tantangan tersebut adalah segmentasi mahasiswa menggunakan algoritme K-Prototypes, yang dirancang untuk menangani data campuran dengan menggabungkan prinsip K-Means (numerik) dan K-Modes (kategorik). Penelitian ini menerapkan algoritme K-Prototypes untuk segmentasi mahasiswa baru program sarjana IPB University tahun 2024 dan mengidentifikasi karakteristik mahasiswa dari hasil penggerombolan yang optimal. Data mencakup 4723 mahasiswa dengan empat peubah numerik dan sebelas peubah kategorik. Proses penggerombolan dilakukan setelah praproses data, standarisasi, penyederhanaan kategori peubah, dan dievaluasi menggunakan rasio S_W/S_B minimum. Hasil penelitian menunjukkan jumlah gerombol optimal adalah lima dengan rasio S_W/S_B sebesar 0,121. Profil gerombol mencerminkan keragaman kondisi sosial ekonomi mahasiswa mulai dari kelompok rentan hingga kelompok paling mapan. Segmentasi ini diharapkan menjadi masukan strategis dalam penetapan kebijakan UKT, bantuan keuangan, serta strategi penerimaan mahasiswa baru di IPB University.
       
      IPB University annually admits new undergraduate students from diverse backgrounds, posing challenges in delivering fair and targeted services. One approach to overcoming this issue is student clustering using the K-Prototypes algorithm, which is designed to handle mixed-type data by combining the principles of K-Means (for numerical data) and K-Modes (for categorical data). This study applies the K-Prototypes algorithm to segment new undergraduate students at IPB University in 2024 and identifies the characteristics of the optimal clustering results. The dataset comprises 4,723 students with four numerical variables and eleven categorical variables. Clustering was performed following data preprocessing, variable recoding, and standardization, with evaluation using the minimum S_W/S_B ratio. The study results indicate that the optimal number of clusters is five, indicated by the minimum S_W/S_B ratio of 0,121. The cluster profiles reflect the diversity of socio-economic conditions, ranging from vulnerable groups to the most affluent. This segmentation is expected to serve as strategic input for setting tuition fee (UKT) policies, financial aid programs, and new student admission strategies at IPB University.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165677
      Collections
      • UT - Statistics and Data Sciences [86]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository