Profiling Aplikasi Respond-OR pada Kombinasi Input Modul Personnel Scheduling Menggunakan Server HPC
Date
2025Author
Sani, Rahmad Ilham
Haryanto, Toto
Giri, Endang Purnama
Metadata
Show full item recordAbstract
Bencana alam menimbulkan tantangan besar dalam penyediaan layanan tanggap darurat karena keterbatasan jumlah Disaster Response Personnel (DRP). Penelitian ini menganalisis pengaruh kombinasi input terhadap waktu eksekusi, eror, dan kualitas output pada modul Personnel Routing and Scheduling (PRS) dalam sistem Decision Support System (DSS) Respond-OR (https://dss-respondor2.cs.ui.ac.id/) yang berjalan di lingkungan High Performance Computing (HPC). Dengan menerapkan pendekatan iteratif skenario melalui 13 siklus eksperimen, fokus diarahkan pada keterkaitan input Personnel dan Demands. Hasil menunjukkan bahwa jumlah personnel dan distribusi demands yang tepat meningkatkan stabilitas dan kecepatan proses, sementara kelebihan demands tanpa diimbangi penyesuaian jumlah grup personel menurunkan kualitas output. Temuan ini menjadi dasar pengembangan sistem penjadwalan DRP yang lebih efektif untuk mendukung optimalisasi aplikasi Respond-OR dalam penanggulangan bencana di Indonesia. Natural disasters pose significant challenges in delivering emergency response services due to the limited availability of Disaster Response Personnel (DRP). This study analyzes the impact of input combinations on execution time, errors, and output quality in the Personnel Routing and Scheduling (PRS) module of the Decision Support System (DSS) Respond-OR (https://dss-respondor2.cs.ui.ac.id/), which operates within a High Performance Computing (HPC) environment. Using an iterative scenario-based approach over 13 experimental cycles, the focus is placed on the interdependence of Personnel and Demands inputs. Results show that appropriate personnel allocation and demand distribution improve process stability and speed, while excessive demands without proper personnel adjustment reduce output quality. These findings form the basis for developing a more effective DRP scheduling system to support Respond-OR optimization in disaster response in Indonesia.
