View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Random Forest Dalam Mengklasifikasikan Ketepatan Waktu Kelulusan Mahasiswa Program Sarjana IPB University Semasa Pandemi

      Thumbnail
      View/Open
      Cover (429.9Kb)
      Fulltext (1.509Mb)
      Lampiran (669.8Kb)
      Date
      2024
      Author
      Wijaya, Arie
      Anisa, Rahma
      Dito, Gerry Alfa
      Metadata
      Show full item record
      Abstract
      Lulus tepat waktu merupakan salah satu indikator kualitas lulusan dalam menyelesaikan studinya. Mahasiswa yang lulus tepat waktu adalah mahasiswa yang dapat menyelesaikan studinya dalam kurun waktu = 8 semester. Penelitian sebelumnya menunjukkan bahwa berdasarkan data kelulusan mahasiswa tahun 2010 hingga 2017, persentase mahasiswa yang lulus tepat waktu masih sangat rendah berkisar 30%. Upaya untuk meningkatkan rasio lulus tepat waktu dapat dilakukan dengan analisis pemodelan menggunakan random forest untuk mengidentifikasi faktor-faktor yang mempengaruhi. Random forest dipilih karena mampu memberikan performa yang baik, mudah diimplementasikan, dan efektif dalam menangani data yang kompleks. Namun data yang digunakan dalam penelitian ini cenderung memiliki masalah ketidakseimbangan data yang ditangani menggunakan Synthetic Minority Oversampling Technique (SMOTE). Oleh karena itu, penelitian ini bertujuan untuk membandingkan kinerja model dari hasil analisis random forest dengan SMOTE dan tanpa SMOTE dan mengidentifikasi peubah penting dalam mengklasifikasikan ketepatan waktu kelulusan mahasiswa program sarjana IPB University. Hasil penelitian menunjukkan bahwa performa model dengan penanganan SMOTE lebih baik dibandingkan tanpa penanganan SMOTE. Peubah penting dalam penelitian adalah IPK terakhir dan IPK PKU, dimana peubah tersebut sangat mempengaruhi ketepatan waktu kelulusan mahasiswa.
       
      Graduating on time is one of the quality indicators for graduates in completing their studies. Students who graduate on time are students who can complete their studies within = 8 semesters. Previous research shows that based on student graduation data from 2010 to 2017, the percentage of students who graduated on time was around 30%. Efforts to increase the on-time graduation ratio can be done by modeling analysis using random forest to identify influencing factors. Random forest was chosen because it can provide good performance, easy to implement, and effective in handling complex data. However, the data used in this study tend to have an imbalance data problem was handled using the Synthetic Minority Oversampling Technique (SMOTE). Therefore, this research aims to compare the model performance from the results of random forest analysis with SMOTE and without SMOTE and to identify variables importance to classify the timeliness of graduation of IPB University undergraduate students. The results of this research showed that the performance of the model with SMOTE handling is better than without SMOTE. The important variables in the research were the final GPA and PKU GPA, where these variables greatly influenced the timeliness of students graduation.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157817
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository