View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Left Circulant dengan Entri Barisan Bilangan Geometri

      Thumbnail
      View/Open
      Cover (2.348Mb)
      Fulltext (2.651Mb)
      Date
      2024
      Author
      Khoerunnisa, Nazwa
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks left circulant yang dinotasikan dengan LCirc merupakan matriks berukuran n x n yang setiap entri pada baris selanjutnya mengalami pergeseran satu satuan ke arah kiri secara berurutan sehingga membentuk sirkular. Entri pada baris matriks tersebut dapat diisi dengan berbagai pola barisan bilangan yang salah satunya adalah barisan geometri. Penelitian ini bertujuan untuk menentukan formula dari determinan dan invers menggunakan metode operasi baris dasar dan operasi kolom dasar. Pada karya tulis ini, matriks LCircn (g) diubah secara ekuivalen menjadi matriks diagonal dengan serangkaian operasi baris dasar dan operasi kolom dasar. Determinan matriks LCircn (g) ditentukan melalui hasil perkalian diagonal utama pada matriks diagonal. Invers matriks LCircn (g) ditentukan melalui persamaan LCircn-1 = QD-1P dengan Q dan P adalah matriks tak singular yang didapatkan dari matriks identitas I yang dikenakan operasi baris dasar dan operasi kolom dasar yang sama pada matriks LCircn (g).
       
      The left circulant matrix denoted by LCirc is an nxn matrix in which each entry in the next row shifts one unit to the left sequentially to form a circle. The entries in the matrix row can be filled with various patterns of sequence of number, one of which is a geometric sequence. This research aims to determine the formula of determinant and inverse using elementary row operation and elementary column operation methods. In this paper, the matrix LCiren (g) is transformed equivalently into a diagonal matrix by a series of elementary row operations and elementary column operations. The determinant of the LCircn (g) matrix is determined by multiplying the main diagonal of the diagonal matrix. The inverse of the LCircn (g) matrix is determined through the equation [LCiren] ^(- 1)=QD^(-1) P with Q and P are non-singular matrices obtained from the identity matrix I subjected to the same elementary row operation and elementary column operation on the LCircn (g) matrix.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157238
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository