View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Indeks Pembangunan Manusia Kabupaten dan Kota di Pulau Jawa Tahun 2022 Menggunakan Geographically Weighted Regression

      Thumbnail
      View/Open
      Cover (634.3Kb)
      Fulltext (4.191Mb)
      Lampiran (342.6Kb)
      Date
      2024
      Author
      Syadiah
      Sulvianti, Itasia Dina
      Dito, Gerry Alfa
      Metadata
      Show full item record
      Abstract
      Indeks Pembangunan Manusia (IPM) sangat penting untuk melihat capaian pembangunan manusia di suatu wilayah. Pulau Jawa memiliki ketimpangan nilai IPM baik antarprovinsi maupun antarkabupaten/kota yang memungkinkan adanya heterogenitas spasial. Heterogenitas spasial dapat menimbulkan adanya hubungan yang berbeda antara peubah respons dengan peubah penjelas di setiap lokasinya yang disebut nonstasioneritas spasial. Oleh karena itu, metode yang dapat digunakan adalah Geographically Weighted Regression (GWR). Tujuan dari penelitian ini adalah menentukan fungsi pembobot kernel terbaik karena sangat memengaruhi model GWR dan menentukan peubah-peubah yang berpengaruh signifikan terhadap IPM kabupaten/kota di Pulau Jawa tahun 2022. Penelitian ini menggunakan data IPM yang disediakan oleh Badan Pusat Statistik dan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi pada tahun 2022. Hasil penelitian menunjukkan bahwa fungsi pembobot kernel terbaik adalah adaptive Gaussian dengan AICc sebesar 601,422. Terdapat tiga kelompok kabupaten/kota berdasarkan peubah penjelas yang signifikan. Persentase penduduk miskin, persentase rumah tangga dengan akses terhadap sanitasi layak, produk domestik regional bruto per kapita, upah minimum, banyaknya rumah sakit umum, dan angka partisipasi kasar SMA/sederajat berpengaruh signifikan terhadap IPM pada semua kabupaten/kota di Pulau Jawa, sedangkan tingkat partisipasi angkatan kerja tidak berpengaruh signifikan. Peubah yang memiliki pengaruh paling besar pada setiap kabupaten/kota di Pulau Jawa adalah persentase penduduk miskin.
       
      Human Development Index (HDI) is very important to see the achievements of human development in a region. Java Island has inequality in HDI values both between provinces and districts/cities, which allows spatial heterogeneity. Spatial heterogeneity can have a different relationship between dependent variable and independent variables at each location, which is called spatial nonstationerity. Therefore, a method that can be used is Geographically Weighted regression (GWR). The purpose of this research is to determine the best kernel weighting function because it greatly affects the GWR model and determine the variables that have a significant effect on the HDI of districts/cities in Java Island in 2022. This research used HDI data provided by Statistics Indonesia and the Ministry of Education, Culture, Research, and Technology in 2022. The results showed that the best kernel weighting function was adaptive Gaussian with AICc of 601,422. There were three groups of districts/cities based on significant independent variables. The percentage of poor people, percentage of households with access to proper sanitation, gross regional domestic product per capita, minimum wage, number of public hospitals, and gross enrollment rate of senior high school/equivalent had a significant effect on HDI in all districts/ cities in Java Island, while the labor force participation rate had no significant effect. The variable that has the largest effect in each district/city in Java Island is the percentage of poor people.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/155610
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository