Analisis Gerombol Data Deret Waktu pada Pola Penyebaran dan Prediksi Kasus Positif Malaria di Provinsi Papua
Abstract
Malaria disebabkan oleh parasit yang ditransmisikan oleh nyamuk Anopheles dan menjadi ancaman kesehatan global dengan risiko tinggi di Indonesia, terutama di Indonesia bagian timur. Provinsi Papua melaporkan tingkat insiden parasit malaria tertinggi pada tahun 2019 di Indonesia. Walaupun upaya pencegahan, termasuk distribusi kelambu massal dan pelatihan tenaga kesehatan, jumlah kasus masih tergolong tinggi. Saat ini, penelitian yang fokus pada pola penyebaran malaria masih terbatas. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi pola penyebaran malaria dengan mengelompokkan kabupaten/kota di Provinsi Papua menggunakan penggerombolan data deret waktu dengan jarak dynamic time warping (DTW) dan memprediksi peningkatan jumlah kasus positif malaria di setiap gerombol menggunakan support vector regression (SVR). Hasil penelitian ini menunjukkan bahwa 29 wilayah dikelompokkan menggunakan k-medoid dengan jarak DTW yang menghasilkan 4 gerombol dengan koefisien silhouette sebesar 0,668. Model SVR berdasarkan data prototype dari setiap kelompok yang terbentuk menghasilkan metrik evaluasi MAPE yang berada pada rentang 6-17%, menunjukkan kinerja prediksi masih tergolong baik. Prediksi selama enam bulan (Januari 2023 hingga Juni 2023) menunjukkan fluktuasi yang berbeda untuk setiap gerombol. Selanjutnya, lembaga kesehatan dapat mempertimbangkan strategi intervensi kesehatan untuk melakukan eliminasi malaria berdasarkan hasil penelitian ini. Malaria is caused by parasites transmitted by Anopheles mosquitoes and is a global health threat with high risk in Indonesia, especially in eastern parts of the country. Papua Province reported the highest Annual Parasite Incidence (API) of malaria in 2019 in Indonesia. Despite prevention efforts, including mass distribution of bed nets and medical staff training, the incidence rate remains high. Currently, research focusing on malaria distribution patterns is limited. Therefore, this study aims to identify malaria distribution patterns by clustering districts/cities in Papua Province using Cluster Analysis of Time Series Data with Dynamic Time Warping (DTW) distance and predict the increase in the malaria positive cases in each cluster using Support Vector Regression (SVR). The results of this study reveal that 29 regions were clustered using the k-medoid with DTW distance, resulting in 4 clusters with a silhouette coefficient of 0,668. SVR modeling, based on prototypes from the formed clusters, yielded evaluation metrics such as MAPE ranging from 6-17%, indicating a good forecasting performance. Predictions over six months (January 2023 to June 2023) showed varying fluctuations for each cluster. Additionally, public health officials can consider the seasonal patterns of malaria cases and the effectiveness of previous intervention strategies in their decision-making.
