View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimasi Panjang Karapas Udang dan Kecepatan Renang Udang Menggunakan Multiple Object Tracking

      Thumbnail
      View/Open
      Cover (1.292Mb)
      Fulltext (1.943Mb)
      Lampiran (1.389Mb)
      Date
      2024
      Author
      Aprianto, Ghinna Naida Putri
      Jaya, Indra
      Iqbal, Muhammad
      Metadata
      Show full item record
      Abstract
      Udang merupakan salah satu komoditas perikanan budidaya yang penting di Indonesia dengan nilai ekonomi tinggi. Pada tahun 2017, produksi udang menurun akibat penyakit yang dapat dideteksi melalui pola tingkah laku seperti kecepatan renang dan pertumbuhan panjang karapas. Pemantauan dengan cara pengukuran manual membutuhkan waktu yang lama dan secara teknis sulit untuk rutin dilakukan petambak. Penelitian ini bertujuan untuk mengestimasi panjang karapas dan kecepatan renang udang serta melakukan tracking gerak udang sebagai dasar analisis tingkah laku. Metode yang digunakan merupakan kombinasi algoritma multiple objects tracking yaitu DeepSORT dengan YOLOv5. Proses penelitian meliputi pengumpulan dataset, pelabelan data, training dengan Teknik k-fold cross validation 5 iterasi, testing, evaluasi, tracking, serta perhitungan panjang karapas dan kecepatan renang udang. Hasil penelitian menunjukkan bahwa YOLOv5 mampu mendeteksi kepala udang dengan f1-score 81.148% dan DeepSORT berhasil melakukan tracking pada video udang. Metode ini efektif untuk estimasi panjang karapas dan kecepatan renang udang.
       
      Shrimp is a crucial aquaculture commodity in Indonesia with significant economic value. In 2017, shrimp production declined due to diseases identified through behavioral patterns such as swimming speed and carapace length growth. Manual monitoring is time-consuming and technically challenging for farmers to perform regularly. This study aims to estimate shrimp carapace length and swimming speed, and to track shrimp movement as a basis for behavioral analysis. The method employs a combination of multiple objects tracking algorithms, specifically DeepSORT with YOLOv5. The research process involves dataset collection, data labeling, training using the k-fold cross-validation technique with 5 iterations, testing, evaluation, tracking, and calculation of shrimp carapace length and swimming speed. The findings reveal that YOLOv5 achieves an F1-score of 81.148% in detecting shrimp heads, and DeepSORT successfully tracks shrimp in videos. This approach proves effective in estimating shrimp carapace length and swimming speed.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/154605
      Collections
      • UT - Marine Science And Technology [2094]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository