View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Metode Regresi Least Trimmed Square Pada Data yang Mengandung Pencilan

      Thumbnail
      View/Open
      Full text (1.184Mb)
      Date
      2012
      Author
      Mas'udah, Anni Fithriyatul
      Kurnia, Anang
      Kusumaningrum, Dian
      Metadata
      Show full item record
      Abstract
      Regresi merupakan metode statistika yang digunakan untuk menduga pola hubungan antara dua atau lebih peubah. Metode pendugaan parameter yang umum digunakan dalam analisis regresi linier adalah metode kuadrat terkecil atau Ordinary Least Squares (OLS), namun metode ini tidak baik digunakan apabila data pada peubah respon mengandung pencilan. Adanya pencilan akan mengakibatkan pendugaan parameter yang dihasilkan bersifat bias dan interpretasi kesimpulan tidak valid. Pada kasus terdapatnya pencilan, alternatif metode yang dapat digunakan adalah regresi kekar. Pada penelitian ini metode yang digunakan adalah Least Trimmed Squares (LTS) dengan dua kriteria pemangkasan yang berbeda (LTS dan LTS₁). LTS melalukan pemangkasan berdasarkan teori Rousseeuw dan Van Driessen, sedangkan LTS, merupakan aplikasi pemangkasan yang dilakukan pada mutlak sisaan baku lebih dari dua. Untuk mengetahui tingkat kekekaran metode LTS dan LTS, dibandingkan dengan OLS dilakukan kajian simulasi dan penerapan data riil. Simulasi dilakukan untuk ukuran contoh yang berbeda (15, 30, 100, dan 200) dan tingkat persentase pencilan yang berbeda (0%, 5%, 10%, 15%, dan 20) dengan ulangan sebanyak 1000 kali pada masing-masing kombinasi ukuran contoh dan persentase pencilan, sedangkan data riil memiliki ukuran contoh 35 dan pencilan delapan persen. Hasil yang didapatkan dari simulasi dan data riil metode LTS lebih baik dibandingkan metode OLS dan LTS, dalam menduga parameter regresi. LTS memiliki nilai bias relatif bias relatif mutlak, KTG relatif, dan KTG yang relatif konstan dan kekar untuk berbagai kondisi pencilan dan ukuran contoh…
      URI
      http://repository.ipb.ac.id/handle/123456789/146818
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository