View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Circulant dengan Entri Barisan Fibonacci

      Thumbnail
      View/Open
      Cover (700.1Kb)
      Fullteks (922.3Kb)
      Lampiran (547.1Kb)
      Date
      2024
      Author
      Junior, Mochammad Dzoukkar Dudayev Nurlianto
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks Circulant adalah matriks segi yang disusun oleh operasi pergeseran sirkular kanan, yaitu pergeseran entri terakhir ke posisi utama disertai pergeseran semua entri lainnya ke posisi berikutnya. Entri-entri dari matriks circulant dapat diisi dengan berbagai macam barisan bilangan, salah satunya bilangan Fibonacci. Pada karya ilmiah ini diformulasikan determinan dan invers matriks circulant dengan entri bilangan Fibonacci. Pembuktian formulasi determinan diperoleh dengan menggunakan operasi baris dasar sehingga ekuivalen ke matriks segitiga atas, dan nilai determinannya adalah hasil kali semua unsur diagonal matriks segitiga atas. Sedangkan formulasi invers diperoleh dengan mengadaptasi langkah pada metode sebelumnya, sehingga diperoleh A_(n)^(-1)=QD^(-1)P dengan P dan Q berturut-turut merupakan matriks yang diperoleh dari serangkaian operasi baris dasar dan operasi kolom dasar tersebut yang dikenakan pada matriks identitas I_(n).
       
      Circulant matrix is a square matrix composed by a right circulant shift operation, namely the shift of the last entry to the first position followed by the shift of all other entries to the next position. The entry of a circulant matrix can be filled by any sequences of numbers, one of which is the Fibonacci numbers sequence. In this research, the determinants and the inverses of circulant matrix are formulated with Fibonacci numbers of entries. The proof of the determinant formulation is obtained using elementary row operation that it is equivalent to upper triangular matrix, and the determinant value is the product of all the diagonal. While the inverse formulation is obtained by adapting the previous method, then we obtain A_(n)^(-1)=QD^(-1)P where P and Q are matrices of a series of elementary row operation and elementary column operation performed previously applied to identity matrix I_(n).
       
      URI
      http://repository.ipb.ac.id/handle/123456789/134447
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository