View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Subsidi Perumahan untuk Masyarakat Berpenghasilan Rendah Menggunakan Metode Generalized LASSO di Pulau Jawa

      Thumbnail
      View/Open
      Cover (2.344Mb)
      Fullteks (2.658Mb)
      Lampiran (2.617Mb)
      Date
      2023
      Author
      Zuna, Raihan Erasaputra
      Rahardiantoro, Septian
      Erfiani
      Metadata
      Show full item record
      Abstract
      Pada tahun 2021 terdapat 12,7 juta masyarakat berpenghasilan rendah yang tidak memiliki rumah di Indonesia. Sebanyak 49% masyarakat berpenghasilan rendah berada di Pulau Jawa. Hal ini mengakibatkan pemerintah membuat kebijakan berupa subsidi KPR perumahan untuk memudahkan masyarakat untuk memiliki rumah. Eksplorasi data dan penentuan wilayah di Pulau Jawa terkait kondisi permintaan kepemilikan rumah menjadi tujuan utama penelitian ini. Metode yang digunakan antara lain metode statistika deskriptif untuk mengetahui sebaran masyarakat yang menerima subsidi KPR, metode heatmap clustering untuk mengetahui pengelompokkan pendapatan masyarakat penerima rumah subsidi dan metode Generalized LASSO dengan kedekatan wilayah dan K-Nearest Neighbor untuk menggerombolkan wilayah berdasarkan permintaan kepemilikan rumah. Hasil dari penelitian ini diperoleh bahwa mayoritas masyarakat dengan angka penerimaan subsidi KPR tertinggi terdapat pada Kabupaten Bekasi dan Kabupaten Bogor. Selain itu, gerombol pendapatan masyarakat yang paling tinggi menerima rumah subsidi berada pada kisaran pendapatan 3,9 sampai 5,9 juta rupiah. Serta, terbentuk sebanyak tujuh gerombol wilayah di Pulau Jawa berdasarkan hasil terbaik pada K-Nearest Neighbor dengan K = 2 pada kasus penggerombolan permintaan kepemilikan rumah dengan metode Generalized LASSO.
       
      In 2021, there were 12.7 million low-income people who did not own a home in Indonesia. As many as 49% of low-income people live in Java. This resulted in the government making a policy in the form of housing mortgage subsidies to make it easier for people to own houses. Data exploration and regional determination in Java related to the condition of demand for home ownership are the main objectives of this study. The methods used include descriptive statistical methods to determine the distribution of people who receive mortgage subsidies, heatmap clustering methods to determine the income grouping of people receiving subsidized houses and the Generalized LASSO method with regional proximity and K-Nearest Neighbor to group areas based on requests for home ownership. The results of this study found that the majority of people with the highest number of mortgage subsidy receipts were in Bekasi Regency and Bogor Regency. In addition, the highest income group of people receiving subsidized houses is in the income range of 3.9 to 5.9 million rupiah. Also, as many as seven regional clusters were formed in Java Island based on the best results on K-Nearest Neighbor with K = 2 in the case of clustering requests for home ownership by the method Generalized LASSO.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/132551
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository