View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Segmentasi Citra Hemispherical Menggunakan Metode Multi- Otsu untuk mengukur penutupan Kanopi Tanaman Karet (Studi Kasus Puslit Karet Sembawa)

      Thumbnail
      View/Open
      Cover (750.8Kb)
      Fullteks (5.168Mb)
      Lampiran (1.666Mb)
      Date
      2023
      Author
      Nurochmat, Rian Reftian
      Herdiyeni, Yeni
      Wijayanto, Arif Kurnia
      Metadata
      Show full item record
      Abstract
      Monitoring perkebunan karet perlu dilakukan supaya penyebaran penyakit bisa dikontrol. Hemispherical photography bisa menjadi salah satu metode untuk menentukan keparahan penyakit di suatu area perkebunan tanaman karet. Tujuan dari penelitian ini adalah untuk menganalisis hubungan antara nilai canopy closure (CC) dengan tingkat keparahan penyakit dari tanaman karet. Metode penelitian ini terdiri dari pengambilan data, pembersihan dan pemilihan citra, Identifikasi keakuratan threshold, analisis hasil segmentasi, dan perbandingan CC dengan indeks lain. Identifikasi nilai threshold menghasilkan satu threshold sebagai threshold paling optimal dengan nilai F-score 0.633. Uji dengan algoritma k-nearest neighbors (k-NN) menghasilkan akurasi sebesar 0.875 untuk gambar identifikasi ahli dan 0.599 untuk semua citra. Nilai CC menunjukkan nilai tertinggi jika dibandingkan dengan nilai indeks NDRE dan LCI. Hal ini menunjukkan bahwa nilai CC bisa digunakan sebagai fitur untuk mengklasifikasikan tingkat keparahan penyakit
       
      Monitoring rubber plantations is necessary to control the spread of diseases. Hemispherical photography can be one of the methods to determine disease severity in a rubber plantation area. The aim of this research is to analyze the relationship between canopy closure (CC) values and the level of disease severity in rubber plants. The research methodology consists of data collection, image cleaning and selection, accuracy threshold identification, segmentation result analysis, and comparison of CC with other indices. The identification of threshold values yields a single optimal threshold with an F-score value of 0.633. Testing using the k- nearest neighbors (k-NN) algorithm results in an accuracy of 0.875 for expert identification images and 0.599 for all images. CC values exhibit the highest value when compared to NDRE and LCI index values. This indicates that CC values can be used as features to classify the level of disease severity.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/126490
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository