View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Klasifikasi Resistensi Obat Pada Mycobacterium Tuberculosis Dari Sekuens Genome Menggunakan Algoritma Multi Label Random Forest

      Thumbnail
      View/Open
      Cover (357.4Kb)
      Fulltext (1.874Mb)
      Date
      2023
      Author
      Alfarabi, Wildan
      Kusuma, Wisnu
      Handayani, Raden
      Metadata
      Show full item record
      Abstract
      Kasus resistensi bakteri Mycobacterium tuberculosis terhadap obat perawatan yang diberikan sedang banyak terjadi. Klasifikasi dan prediksi resistensi obat pada bakteri tuberkulosis diperlukan dalam rangka memberikan perawatan yang tepat. Akan tetapi, uji kepekaan obat (DST) secara konvensional memerlukan waktu dan biaya yang cukup tinggi, sehingga diperlukan alternatif lain. Mengandalkan teknologi next-generation sequencing pada saat ini, metode machine learning dapat digunakan untuk memprediksi resistensi obat pada bakteri tuberkulosis. Penelitian ini berfokus dalam klasifikasi resistensi obat pada bakteri tuberkulosis dengan metode Multi-Label Random Forest (MLRF) menggunakan data sekuens hasil whole genome sequencing (WGS). ARIBA digunakan untuk ekstraksi fitur genetik potensial dari data sekuens yang berpengaruh terhadap antimicrobial resistance (AMR). Fitur genetik yang berpotensi memiliki pengaruh terhadap AMR akan digunakan untuk konstruksi model MLRF dalam klasifikasi resistensi obat pada bakteri. Optimalisasi terhadap model MLRF juga dilakukan dalam upaya meningkatkan akurasi dari model
       
      There are many cases of drug resistance of the Mycobacterium tuberculosis bacteria to the treatment drugs given. Classification and prediction of drug resistance in tuberculosis bacteria is needed in order to provide appropriate treatment. However, conventional drug susceptibility testing (DST) requires a high time and cost, so another alternative is needed. Relying on current next-generation sequencing technology, machine learning methods can be used to predict drug resistance in tuberculosis bacteria. This study focuses on the classification of drug resistance in tuberculosis bacteria using the Multi-Label Random Forest (MLRF) method using sequence data from whole genome sequencing (WGS). The tool used to extract potential genetic features that influence antimicrobial resistance (AMR) from sequence data is ARIBA. Genetic features that have the potential to influence AMR will be used for the construction of the MLRF model in the classification of drug resistance in bacteria. Optimization of the MLRF model was also carried out in an effort to increase the accuracy of the model.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/125589
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository