View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pembangunan Algoritma Pohon Keputusan dalam Deteksi Agroforestri Kakao di Tiga Tipologi: Studi Kasus di Kecamatan Masamba

      Thumbnail
      View/Open
      Cover (431.5Kb)
      Full teks (1.951Mb)
      Lampiran (922.4Kb)
      Date
      2023
      Author
      Manisyah
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Tulisan ini menerangkan tentang pembangunan algoritma klasifikasi machine learning pohon keputusan dalam mengidektifikasi agroforestri kakao dan kakao monokultur pada tiga tipologi menggunakan data penginderaan jauh dan data geospasial. Tujuan dari penelitian ini adalah untuk menemukan peubah (atribut) serta parameter algoritma pohon keputusan dalam mendeteksi kakao khususnya agroforestri berbasis citra resolusi tinggi SPOT 6/7. Kajian ini menguji peubah sosio-biogeofisik dan peubah spektral yang diturunkan dari citra SPOT SPOT 6/7. Penelitian ini menemukan bahwa peubah paling berpengaruh adalah NDVI untuk tipologi 1 dan 2, serta elevasi untuk tipologi 3. Penelitian ini juga menemukan bahwa kriteria dari algoritma pohon keputusan terbaik adalah information gain untuk tipologi 1 dan 2, serta gini index untuk tipologi 3. Kombinasi tersebut menghasilkan kappa accuracy (KA) sebesar 97,30%, 98,80%, dan 99,21% untuk tiap tipologi.
       
      This paper describes the development of a decision tree machine learning classification algorithm to identify cocoa agroforestry and cocoa monocultures in three typologies using remote sensing data and geospatial data. The objective of this study was to find variables (attributes) and parameters of the decision tree algorithm in detecting cocoa, especially agroforestry, based on SPOT 6/7 high resolution imagery. This study examines the socio-biogeophysical variables and spectral variables derived from SPOT SPOT 6/7 images. This study found that the most influential variables were NDVI for typology 1 and 2, and elevation for typology 3. This study also found that the best decision tree algorithm criteria were information gain for typology 1 and 2 and gini index for typology 3. The combination produces Kappa Accuracy (KA) of 97,30%, 98,80% and 99,21% for each typology. This study concludes that the vegetation index variable is more reliable in identifying built-up land cover classes than socio-biogeophysical variables.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/125497
      Collections
      • UT - Forest Management [3207]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository