View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Aplikasi Algoritma Pohon Keputusan Pembelajar Mesin (Decision Tree of Machine Learning) dalam Deteksi Agroforestri Kakao: Studi Kasus Kecamatan Baebunta dan Baebunta Selatan, Luwu Utara

      Thumbnail
      View/Open
      Cover (976.5Kb)
      Fullteks (2.713Mb)
      Lampiran (383.8Kb)
      Date
      2023-09-26
      Author
      Padantya, Athallah Syafiq
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Tulisan ini menjelaskan tentang pembangunan algoritma pohon keputusan dari pembelajar mesin menggunakan data penginderaan jauh dan data geospasial untuk mengidentifikasi tanaman kakao agroforestri dan kakao monokultur. Tujuan dari penelitian ini adalah untuk menentukan peubah, atribut, dan parameter dalam mengidentifikasi agroforestri kakao dan kakao monokultur menggunakan citra SPOT 7 dengan fitur indeks vegetasi dan parameter geo-sosio-biofisik menggunakan mesin pembelajaran pohon keputusan. Penelitian ini menemukan bahwa peubah yang paling berpengaruh adalah NDVI dan elevasi. Penelitian ini juga menemukan bahwa parameter yang paling berpengaruh adalah Information Gain dengan kombinasi tanpa pemangkasan (pruning), tanpa pra-pangkas (pre pruning), kedalaman pohon 51, pra-pangkas alternatif (pre-pruning alternative) 21, ukuran daun 21, dan jenis sampel yang digunakan adalah Random Sampling. Kajian ini menghasilkan nilai Overall Accuracy (OA) sebesar 93,56% dan Kappa Accuracy (KA) sebesar 92,9%. ATHALLAH SYAFIQ PADANTYA. Application of the Decision Tree of Machine Learning Algorithm in the Detection of Cocoa Agroforestry: a Case Study of Baebunta and South Baebunta Districts, North Luwu. Supervised by I NENGAH SURATI JAYA. This paper describes the development of a decision tree of machine learning algorithm using remote sensing data and geospatial data to identify agroforestry and monoculture cocoa plants. The purpose of this research is to determine variables, attributes, and parameters in identifying cocoa agroforestry and cocoa monoculture using SPOT 7 with vegetation index features and geo-socio-biophysical parameters using machine learning decision tree. This study found that the most influential variables were NDVI and elevation. This study also found that the most influential parameter was Information Gain with a combination of no pruning, no pre-pruning, tree depth of 51, pre-pruning alternative of 21, leaf size of 21, and the type of sample which is random sampling. This study resulted an Overall Accuracy (OA) value of 93,56% and a Kappa Accuracy (KA) value of 92,9%.
      URI
      http://repository.ipb.ac.id/handle/123456789/125468
      Collections
      • UT - Forest Management [3207]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository