View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Cluster Ensemble untuk Pengelompokan Kabupaten/Kota di Indonesia Berdasarkan Kualitas Pendidikan

      Thumbnail
      View/Open
      Cover (303.0Kb)
      Full teks (594.5Kb)
      Lampiran (174.6Kb)
      Date
      2023
      Author
      Alfira, Ajeng Bita
      Afendi, Farit Mochamad
      Anisa, Rahma
      Metadata
      Show full item record
      Abstract
      Clustering merupakan metode yang cukup populer dan telah banyak digunakan di berbagai bidang. Pengelompokan dalam statistik dilakukan dengan menggunakan analisis gerombol. Penelitian ini bertujuan untuk mengelompokkan kabupaten/kota berdasarkan kualitas pendidikan dengan dua tipe data yang berbeda. Cluster ensemble adalah metode yang tepat untuk mengelompokkan data campuran. Metode ini menggabungkan hasil dari dua metode penggerombolan yang berbeda yang kemudian digabungkan untuk memperoleh hasil akhir. Metode untuk data numerik menggunakan metode agglomerative hierarchical clustering dan untuk data kategorik menggunakan algoritma squeezer. Pengelompokan 514 kabupaten/kota di Indonesia berdasarkan 18 peubah menghasilkan 3 gerombol. Jumlah anggota setiap gerombol adalah 446, 51, dan 17. Gerombol 1 merupakan wilayah dengan kualitas pendidikan terbaik berdasarkan indikator yang digunakan. Gerombol 2 dicirikan dengan rataan RLS dan HLS tertinggi serta rataan rasio murid terhadap guru yang paling besar dan sangat jauh dari batas ideal. Sementara itu, gerombol 3 menjadi gerombol dengan kualitas pendidikan yang paling rendah. Gerombol ini dicirikan dengan rataan RLS dan persentase guru terkualifikasi SMK yang sangat kecil.
       
      Clustering is a method that is quite popular and has been widely used in various fields. Clustering in statistics is done by using cluster analysis. This research aims to classify regions based on the quality of education with two different data types. Cluster ensemble are an appropriate method for clustering mixed data. This method combines the results of two different clustering methods which are then obtained into the final result. The method for numeric data uses the hierarchical clustering method and for categorical data uses the squeezer algorithm. Clustering of 514 district/cities in Indonesia based on 18 variables resulted in 3 clusters. The number of members of each cluster is 446, 51, and 17. Cluster 1 is the region with the best quality of education based on the indicators used. Cluster 2 is characterized by the highest average RLS and HLS and the highest student to teacher ratio which is very far from the ideal limit. Meanwhile, cluster 3 is the group with the lowest quality of education. This cluster is characterized by a very small average RLS and percentage of SMK qualified teachers.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/124356
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository