View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Algoritma SMOTE Dalam Penanganan Imbalance Data Citra Multispektral Klasifikasi Kesuburan Sawah.

      Thumbnail
      View/Open
      Cover (118.5Kb)
      Fulltext (956.0Kb)
      Lampiran (116.7Kb)
      Date
      2023-08
      Author
      Septian, Alfariz Gilang
      Priandana, Karlisa
      Hardhienata, Medria Kusuma Dewi
      Metadata
      Show full item record
      Abstract
      Peningkatan penggunaan teknologi terkini sangat dibutuhkan dalam dunia pertanian khususnya untuk memenuhi kebutuhan tanaman pangan dikarenakan peningkatan populasi manusia yang semakin cepat. Hal tersebut menyebabkan perlunya peningkatan pemanfaatan sumber daya dan lahan yang efisien, salah satu penerapan teknologi terkini yaitu precision fertilization (pemupukan presisi) yang termasuk ke dalam precision farming (pertanian presisi). Namun data yang didapatkan pada lahan sawah tidak selalu berjumlah seimbang, sehingga mengakibatkan permasalahan yang dinamakan imbalance data. Oleh karena itu, dibutuhkan suatu cara untuk mengatasi masalah imbalance data. Dalam penelitian ini, masalah tersebut diatasi dengan menggunakan algoritma synthetic minority oversampling technique (SMOTE) dan diimplementasikan pada data citra multispektral klasifikasi kesuburan sawah. Implementasi algoritma SMOTE membuat data seimbang dan model diimplementasi SMOTE memiliki nilai precision, recall, dan f1-score sebesar 90%, 89%, dan 89%. Hasil ini mengungguli hasil kinerja model tanpa menggunakan SMOTE yang memiliki nilai sebesar 63%, 45%, dan 49% dengan adanya peningkatan sebesar 27%, 44%, dan 40%.
       
      Increasing the use of the latest technology is urgently needed in the world of agriculture, especially to meet the needs of food crops due to the rapid increase in human population. This causes the need to increase the efficient use of resources and land, one of the applications of the latest technology, namely precision fertilization which is included in precision farming. However, the data obtained on paddy fields is not always balanced, resulting in a problem called data imbalance. Therefore, we need a way to overcome the problem of imbalance data. In this study, this problem was overcome by using the synthetic minority oversampling technique (SMOTE) algorithm and implemented on multispectral image data of rice field fertility classification. The implementation of the SMOTE algorithm makes the data balanced and the model implemented by SMOTE has precision, recall and f1-score values of 90%, 89%, dan 89%. These results outperform the performance results of models without using SMOTE which have values of 63%, 45%, dan 49% with an increase of 27%, 44%, dan 40%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/123977
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository