View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Strongsort Dengan Yolov5 Untuk Pendeteksian Posisi Bangkai Ayam Dari Data Video

      Thumbnail
      View/Open
      Cover (1.948Mb)
      Fullteks (5.341Mb)
      Date
      2023
      Author
      Fadlurahman, Rafie
      Permana, Idat Galih
      Buono, Agus
      Metadata
      Show full item record
      Abstract
      Dalam peternakan ayam, jika bangkai ayam tidak dibuang dengan cepat dari kandang ayam, akan meningkatkan resiko tersebarnya penyakit unggas. Oleh karena itu, suatu metode yang dapat mendeteksi bangkai ayam secara cepat akan sangat berguna untuk peternak ayam. Penelitian ini mengajukan untuk menggunakan Object Tracking sebagai metode pendeteksian bangkai ayam. Model Object Tracking yang digunakan adalah StrongSORT yang dibantu dengan metode Object Detection YOLOv5. Data video dari 8 kamera CCTV kandang ayam Fakultas Peternakan akan digunakan sebagai data pelatihan dan pengujian. Object Tracking akan dijalankan terhadap data tersebut. Akan disimulasikan data yang akan merepresentasikan data bangkai ayam. Hasil penelitian mendapatkan akurasi klasifikasi terbaik terendah 92% dan tertinggi 99%
       
      In poultry farming, if carcasses are not quickly disposed of, they will increase the risk of spreading diseases. Therefore, a method that can quickly detect chicken carcasses will be very useful to poultry farmers. This research proposes to use Object Tracking as said method. StrongSORT is chosen as the object tracking model with the help of YOLO v5 as an Object Detection model. Video Data from 8 CCTV from Faculty of Animal Science’s chicken shed will be used as training and testing data. Object Tracking will be executed on said data. Data will be simulated which will represent chicken carcass data. The result of the research the best accuracy of classifiers at worst is 92% and at best 99%
       
      URI
      http://repository.ipb.ac.id/handle/123456789/123894
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository