View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Prediksi Data Tinggi Muka Air Lahan Gambut Menggunakan Facebook Prophet dan Gated Recurrent Unit

      Thumbnail
      View/Open
      Cover (361.9Kb)
      Fulltext (2.132Mb)
      Lampiran (171.6Kb)
      Date
      2023
      Author
      Sianturi, Antonius Anre
      Kustiyo, Aziz
      Sitanggang, Imas Sukaesih
      Metadata
      Show full item record
      Abstract
      Lahan gambut merupakan akumulasi dari bahan organik yang mengandung karbon lebih dari 12%. Keringnya lahan gambut membuat rentan terjadinya kebakaran hutan dan lahan (karhutla) yang dapat diidentifikasi melalui tinggi muka airnya (TMA). Indonesia telah membangun Sistem Pemantau Air Lahan Gambut (Sipalaga) pada laman https://sipalaga.brg.go.id. Data TMA, curah hujan, dan kelembaban tanah dari Sipalaga stasiun Rimba Panjang digunakan untuk prediksi TMA guna deteksi dini dari terjadinya karhutla. Namun, pada data banyak ditemukan missing value yang harus ditangani. Penelitian ini memiliki tujuan untuk membangun sekaligus membandingkan model prediksi TMA menggunakan Facebook Prophet dan Gated Recurrent Unit (GRU). Nilai hilang ditangani menggunakan teknik interpolasi dan moving average. Model terbaik diperoleh menggunakan dimensi input multivariat metode GRU dengan imputasi interpolasi linier. Evaluasi menggunakan R2 , MAE, dan MSE memiliki hasil 0,96469, 0,01135, dan 0,00023. Prediksi TMA menggunakan hasil penelitian ini diharapkan dapat membantu sistem peringatan dini karhutla di Indonesia.
       
      Peatlands are accumulations of organic matter containing more than 12% carbon. Dry peatlands make them vulnerable to forest and land fires which can be identified by their groundwater level (GWL). Indonesia has built a Peatland Water Monitoring System on the https://sipalaga.brg.go.id page. TMA data, rainfall, and soil moisture from Sipalaga Rimba Panjang station are used for TMA predictions to detect early forest and land fires. However, in the data there are many missing values that must be addressed. This study aims to build and compare the TMA prediction model using Facebook Prophet and Gated Recurrent Unit (GRU). Missing values are handled using interpolation techniques and moving averages. The best model is obtained using multivariate input dimensions GRU method with linear interpolation imputation. Evaluation using R2, MAE, and MSE has results of 0.96469, 0.01135, and 0.00023. TMA predictions using the results of this study are expected to help the land and forest fire early warning system in Indonesia.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/122079
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository