View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Peramalan Harga Saham Sektor Energi dengan Pendekatan Penggerombolan Data Deret Waktu

      Thumbnail
      View/Open
      Cover (309.2Kb)
      Skripsi (3.735Mb)
      Lampiran (1.155Mb)
      Date
      2023
      Author
      Sakinah, Linda
      Anisa, Rahma
      Sumertajaya, I Made
      Metadata
      Show full item record
      Abstract
      Investasi saham menjanjikan return lebih tinggi namun memiliki risiko tinggi karena fluktuasi harga yang sulit diprediksi. Sektor energi potensial karena memiliki kenaikan indeks sektoral tertinggi tahun 2022. Namun, hal tersebut tidak menandakan kenaikan harga saham terjadi merata pada semua emiten. Oleh karena itu, perlu analisis penggerombolan emiten berdasarkan kemiripan pergerakan harga sahamnya. Hasilnya digunakan untuk peramalan harga saham level gerombol. Penelitian ini bertujuan untuk mengevaluasi kinerja penggerombolan emiten sektor energi menggunakan jarak autocorrelation-based dan dynamic time warping(DTW) serta melakukan peramalan harga saham level gerombol. Data yang digunakan adalah data harga saham penutupan periode mingguan. Proses penggerombolan menggunakan metode berhirarki pautan rataan. Peramalan harga saham setiap gerombol menggunakan model ARIMA level gerombol yang performanya dievaluasi dengan rolling-cross validation. Hasil penelitian menunjukan jarak DTW memiliki kinerja penggerombolan terbaik. Emiten sektor energi dikelompokkan menjadi empat gerombol dengan kategori strong cluster karena koefisien silhouette > 0,71. Model ARIMA setiap gerombol menghasilkan nilai MAPE antara 10-20% sehingga dikategorikan model dengan peramalan baik. Gerombol A dan D direkomendasikan untuk investor karena diduga memiliki potensi keuntungan tertinggi dari capital gain berdasarkan hasil peramalan harga saham. Gerombol A dan D juga berisi perusahaan dengan fundamental dan kebijakan deviden yang baik.
       
      Stock investment promises higher returns but carries high risks because unpredictable price fluctuations. Energy sector shows potential due to its highest sectoral index growth in 2022. However, this does not indicate that stock price increases occur evenly among all issuers. Therefore, it’s necessary to analyze clustering of issuers based on similarity of their stock price movements and used for forecasting stock prices at cluster level. This study aims to evaluate performance of clustering energy sector issuers using autocorrelation-based distance and dynamic time warping(DTW), and to forecast stock prices at cluster level. The data used consists weekly closing stock prices. The clustering used hierarchical average linkage method. Stock price forecast for each cluster used ARIMA model and its performance was evaluated using rolling-cross validation. The results showed that DTW distance had the best clustering performance. Energy sector issuers were grouped into four clusters with strong cluster category, indicated by silhouette coefficient > 0.71. ARIMA models for each cluster produced MAPE values between 10-20%, categorizing them as good forecasting models. Clusters A and D were recommended for investors because have highest potential for capital gain based on forecasted stock prices. That clusters also consisted of companies with strong fundamentals and dividend policies.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/120926
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository