View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Faktor-faktor yang Memengaruhi Anemia dan Defisiensi Besi pada Wanita Hamil di Indonesia

      Thumbnail
      View/Open
      Cover (2.439Mb)
      Fullteks (6.830Mb)
      Lampiran (1.330Mb)
      Date
      2023
      Author
      Yuliana, Elis
      Anisa, Rahma
      Aidi, Muhammad Nur
      Nurjanah, Nunung
      Metadata
      Show full item record
      Abstract
      Wanita hamil berisiko tinggi mengalami anemia, defisiensi besi (DB), dan anemia defisiensi besi (ADB). Selama kehamilan, hal itu dikaitkan dengan berat badan lahir rendah, kelahiran prematur, dan peningkatan risiko kematian perinatal. Kondisi anemia, DB, ADB, dapat diprediksi dengan menggunakan metode regresi logistik multinomial. Namun, metode klasifikasi rentan terhadap data yang tidak seimbang. Salah satu metode yang dapat digunakan untuk mengatasi masalah ketidakseimbangan data adalah Random Over Sampling (ROS). Hasil metode regresi logistik multinomial menunjukkan bahwa faktor yang memengaruhi anemia dan defisiensi besi secara signifikan adalah usia kehamilan, status gizi, riwayat penyakit malaria, pendidikan, frekuensi konsumsi buah, dan frekuensi konsumsi sayuran. Model regresi logistik multinomial memberikan akurasi klasifikasi sebesar 44,559%. Penelitian ini juga menunjukkan bahwa tingkat ketepatan klasifikasi keempat kategori lebih seimbang setelah dilakukan Random Over Sampling.
       
      Pregnant women are at high risk of anemia, iron deficiency (ID), and iron deficiency anemia (IDA). During pregnancy, it has been associated with low birth weight, premature delivery, and increased risk of perinatal mortality. Anemia, ID, IDA conditions can be predicted using multinomial logistic regression method. However, the classification method is prone to data imbalance. One method that can be used to overcome the problem of data imbalanced is Random Over Sampling (ROS). The results of multinomial logistic regression method indicated that outcome variable were significantly influanced by gestational age, nutritional status, malaria, education, frequency of fruit and vegetable consumption. Multinomial logistic regression model provided classification accuracy of 44,559%. This study also shows that the accuracy of the classification of the four categories is more balanced after Random Over Sampling.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/120721
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository