View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan Model SEIR COVID-19 dengan Pengaruh Vaksinasi

      Thumbnail
      View/Open
      Cover (467.6Kb)
      Fulltext (884.7Kb)
      Lampiran (2.187Mb)
      Date
      2023
      Author
      Andareksa, Rimba
      Jaharuddin
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Corona Virus Disease atau COVID-19 adalah penyakit menular yang cukup serius bagi kesehatan masyarakat. COVID-19 merupakan penyakit yang disebabkan oleh virus SARS-CoV-2. Tujuan dari penelitian ini adalah menentukan serta menganalisis kestabilan dari titik tetap pada model SEIR COVID-19 dan melakukan simulasi numerik untuk mengkaji pengaruh vaksinasi. Analisis kestabilan titik tetap ditentukan dengan aturan Descartes dan fungsi Lyapunov. Bilangan reproduksi dasar (ℛ0) didapatkan dengan menggunakan matriks next generation. Hasil penelitian ini menunjukkan bahwa titik tetap bebas penyakit bersifat stabil asimtotik bilamana ℛ0 < 1. Simulasi numerik dilakukan dengan menggunakan software Mathematica 13.0. untuk mengetahui pengaruh parameter terhadap bilangan reproduksi dasar. Penurunan laju perpindahan populasi individu terpapar ke populasi individu terinfeksi mengakibatkan bilangan reproduksi dasar menurun. Kenaikan tingkat pemberian vaksinasi pada populasi individu rentan akan mengakibatkan bilangan reproduksi dasar menurun. Dengan mengontrol kedua parameter tersebut, penyebaran penyakit akan dapat dikendalikan.
       
      Corona Virus Disease or COVID-19 is an infectious disease that is quite serious for public health. COVID-19 is a disease caused by the SARS- CoV-2 virus. The purpose of this study is to determine and analyze the stability of equilibrium points in the COVID-19 SEIR model and conduct numerical simulations to assess the effect of vaccination. The analysis of equilibrium-point stability is determined by Descartes' rule and the Lyapunov function. The basic reproduction number (ℛ0) is obtained using the next generation matrix. The results of this study show that disease-free fixed points are asymptotic stable when ℛ0 < 1. Numerical simulations were carried out using Mathematica 13.0 software to find out the effect of parameters on the basic reproductive number. A decrease in population movement rate of the population of exposed individuals to the population of infected individuals causes a decrease in the basic reproductive number. An increase vaccination rate in vulnerable individual populations will causes a decrease in the basic reproductive number. By controlling parameters, the spread of the disease will be controlled.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/120166
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository