View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deteksi Kerusakan dan Revegetasi Pasca Kebakaran Hutan dan Lahan dengan Pendekatan Decision-Tree Machine Learning: Studi Kasus di Jambi

      Thumbnail
      View/Open
      Cover (1.382Mb)
      Lampiran (343.0Kb)
      Full Text (3.443Mb)
      Date
      2023-06-15
      Author
      Rizkiana, Ridha
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Informasi mengenai kondisi tutupan hutan dan lahan pasca kebakaran merupakan salah satu bagian penting dalam kegiatan pemantauan setelah terjadinya kebakaran hutan. Penelitian ini bertujuan untuk menentukan fitur, atribut, dan parameter dalam mendeteksi kerusakan dan revegetasi akibat kebakaran berbasis pada citra multiwaktu dengan citra sintetik menggunakan pendekatan Pohon Keputusan (Decision Tree) Pembelajar Mesin (Machine Learning). Penelitian ini menemukan bahwa parameter paling akurat adalah Gini Index pada K1 dengan kombinasi pemangkasan (pruning), tanpa pra-pangkas (pre-pruning), kedalaman pohon sebesar 60, pra-pangkas alternatif (pre-pruning alternative) sebesar 50, sampling split dengan stratified sampling, dan ukuran daun sebesar 41 atau K2 dengan kombinasi tanpa pemangkasan (without pruning), tanpa pra-pangkas (pre pruning), kedalaman pohon sebesar 80, pra-pangkas alternatif (pre-pruning alternative) sebesar 30, sampling split dengan automatic sampling, dan ukuran daun sebesar 100. Kajian ini memberikan overall akurasi (OA) sebesar 95,7% dan kappa accuracy (KA) sebesar 94,6%. Dari tujuh citra indeks yang diuji dengan pohon keputusan, ditemukan tiga indeks yang paling signifikan pada BNDVI (Blue Normalized Differenced Vegetation Index), NBBI (Normalized Built-up & Bare Land Index), dan NDWIG (Normalized Differenced Wetness Index, green-based).
       
      Information on post-fire forest and land cover conditions is important to monitoring activities after forest fires. The study’s objective is to determine features, attributes, and parameters in detecting damage and vegetation growth due to fires based on multi-temporal images with synthetic images using a Machine Learning approach. This study found that the most accurate parameters were the Gini Index at K1 with a combination of pruning, no pre-pruning, tree depth of 60, pre-pruning alternative of 50, sampling split with stratified sampling, and leaf size of 41 or K2 with a combination of no pruning, no pre-pruning, tree depth of 80, pre-pruning alternative by 30, sampling split by automatic sampling, and leaf size by 100. Overall accuracy (OA) gives a value of 95,7% and kappa accuracy (KA) of 94,6%. The classification results of the seven index images tested with decision trees obtained the three most significant indices on BNDVI (Blue Normalized Difference Vegetation Index), NBBI (Normalized Built-up &; Bare Land Index), and NDWIG (Normalized Differenced Wetness Index, green-based).
       
      URI
      http://repository.ipb.ac.id/handle/123456789/119326
      Collections
      • UT - Forest Management [3207]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository