View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Skew Left Circulant dengan Entri Bilangan Fibonacci

      Thumbnail
      View/Open
      Cover (587.0Kb)
      Fulltext (927.0Kb)
      Lampiran (583.3Kb)
      Date
      2023
      Author
      Mamella, Dwiva
      Mas'oed, Teduh Wulandari
      Siswandi
      Metadata
      Show full item record
      Abstract
      Matriks skew left circulant adalah suatu matriks persegi dengan entri baris bergeser satu kolom secara berurutan ke kiri dan semua entri yang berada dibawah diagonal sekunder akan bernilai negatif, sehingga untuk mengetahui seluruh matriks skew left circulant dapat dilihat dari salah satu baris dari matriks tersebut. Entri-entri dari skew left circulant dapat menggunakan entri dengan berbagai barisan bilangan, salah satunya adalah dengan barisan bilangan Fibonacci. Pada karya ilmiah ini diformulasikan determinan dan invers matriks skew left circulant dengan entri bilangan Fibonacci. Pembuktian Formulasi determinan matriks skew left circulant diperoleh dari penerapan serangkaian operasi baris dasar pada matriks skew circulant sehingga diperoleh matriks segitiga atas, dilanjutkan mengalikan dengan determinan matriks Gamma. Sedangkan, formulasi inversnya diperoleh dengan membuat matriks-matriks dari matriks skew circulant representasi dari hasil serangkaian operasi baris dasar dan operasi kolom dasar, dilanjutkan dengan mengalikan dengan invers matriks Gamma.
       
      The left circulant skew matrix is a square matrix with row entries shifted one column sequentially to the left and all entries under the secondary diagonal will be negative, so to find out the entire circulant skew left matrix can be seen just from the first row of the matrix. Entries from the skew left circulant can be filled in various number sequences, one of which is the Fibonacci number sequence. In this scientific work, the determinants and inverses of the skew left circulant matrix are formulated with Fibonacci number entries. Proof The formulation of the skew left circulant matrix determinant is obtained from applying a series of basic row operations to the circulant skew matrix so that an upper triangular matrix is obtained, followed by multiplying it with the Gamma matrix determinant. Meanwhile, the inverse formulation is obtained by making matrices from a circulant skew matrix representing the results of a series of basic row or column operations, followed by multiplying by the inverse Gamma matrix.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/117908
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository