Analisis dan Pemodelan Dampak ENSO dan IOD Terhadap Hotspot di Papua
Abstract
Curah hujan dan anomalinya merupakan salah satu pemicu kemunculan hotspot. ENSO dan IOD memiliki dampak pada peningkatan dan penurunan curah hujan di Indonesia. Penelitian ini memodelkan dampak IOD dan ENSO terhadap hotspot di Papua. Dampak tersebut dimodelkan menggunakan optimasi tanpa kendala dengan fungsi tujuan meningkatkan korelasi antara data iklim (dryspell dan anomali curah hujan) dan data hotspot dan variabel keputusan adalah koefisien model. Koefisien merepresentasikan dampak IOD, ENSO, dan kombinasi keduanya terhadap hotspot. Pembobotan dryspell dan anomali curah hujan dengan ENSO dan IOD memberikan peningkatan korelasi terhadap hotspot dibanding sebelum diboboti. Analisis HCM juga menunjukkan pembobotan tersebut memberikan penguatan asosiasi secara spasial. ENSO menjadi indikator yang lebih besar dampaknya terhadap hotspot di Papua dibanding IOD. Total precipitation dan its anomalies are the triggers for the emergence of hotspot. ENSO and IOD have impacts on increasing and decreasing total precipitation in Indonesia. This study modeled the impact of IOD and ENSO on hotspot in Papua. The impact is modeled using unconstraint optimization with the objective function maximizing the correlation between climate data (dryspell and precipitation anomaly) and hotspot data and the decision variable is the model coefficient. The coefficients represent the impact of IOD, ENSO, and combination of them on hotspots. Weighting with ENSO and IOD on dryspell and precipitation anomaly improves correlation to hotspots compared before weighting. HCM analysis also showed the weighting improved spatial associations. ENSO is an indicator of its greater impact on hotspot in Papua than IOD.
Collections
- UT - Mathematics [1448]