View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Metode CHAID dan Random Forest dalam Klasifikasi Status Kemiskinan Rumah Tangga di Jawa Tengah

      Thumbnail
      View/Open
      Cover (656.4Kb)
      Fullteks (1.010Mb)
      Lampiran (168.7Kb)
      Date
      2022
      Author
      Izzati, Fatkhul
      Masjkur, Mohammad
      Afendi, Farit Mochamad
      Metadata
      Show full item record
      Abstract
      Jawa Tengah menempati posisi kedua sebagai provinsi dengan jumlah penduduk miskin terbanyak di Indonesia pada Maret 2020 lalu. Upaya pengentasan kemiskinan sudah dilakukan, namun masih banyak yang belum tepat sasaran. Tujuan dari penelitian ini adalah melakukan pemodelan klasifikasi status kemiskinan rumah tangga di Jawa Tengah menggunakan metode CHAID dan random forest serta membandingkan kedua metode tersebut. Data yang digunakan dalam penelitian ini adalah data hasil Survei Sosial Ekonomi Nasional (SUSENAS) 2020 yang dilakukan oleh Badan Pusat Statistik (BPS) untuk wilayah Provinsi Jawa Tengah. Jumlah rumah tangga miskin jauh lebih sedikit dibandingkan dengan rumah tangga tidak miskin. Oleh karena itu, dilakukan Synthetic Minority Oversampling Technique (SMOTE) untuk menangani data tidak seimbang. Metode random forest menghasilkan performa klasifikasi yang lebih baik dibandingkan metode CHAID dengan nilai akurasi, sensitivitas, spesifisitas dan AUC berturut-turut 93,95%, 98,43%, 89,92%, dan 0,94. Peubah penting yang membangun model random forest adalah peubah luas lantai rumah, umur kepala rumah tangga, bahan bakar memasak, tempat pembuangan akhir tinja dan kepemilikan tempat buang air besar.
       
      Central Java was in the second position as the province with the highest number of poor people in Indonesia in March 2020. Poverty alleviation efforts have been carried out, but many are still not on target. The purpose of this study was to model the classification of household poverty status in Central Java using CHAID and random forest methods and compare the two methods. The data used in this study is data from the 2020 National Socioeconomic Survey (SUSENAS) conducted by the Central Bureau of Statistics (BPS) for Central Java. The number of poor households is much less than non-poor households. Therefore, SMOTE was performed to handle unbalanced data. The random forest method produced better classification performance than the CHAID method with accuracy, sensitivity, specificity, and AUC of 93,95%, 98,43%, 89,92%, and 0,94, respectively. The important variables that build the random forest model are the floor area of the house, the age of the head of the household, cooking fuel, the place for the final disposal of feces, and ownership of the place to defecate.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115803
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository