View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Intervensi Fungsi Step terhadap Produksi Padi di Indonesia

      Thumbnail
      View/Open
      Cover (379.7Kb)
      Fullteks (1.345Mb)
      Lampiran (99.49Kb)
      Date
      2023
      Author
      Latifah, Fella Sufah
      Afendi, Farit M.
      Dito, Gerry Alfa
      Metadata
      Show full item record
      Abstract
      Salah satu komoditas pertanian terbesar di Indonesia yaitu padi. Keberadaan padi sebagai makanan pokok harus terjaga sehingga dilakukan peramalan terhadap produksi padi di Indonesia. Peramalan terhadap produksi padi di Indonesia menggunakan analisis intervensi karena adanya perubahan metode penghitungan luas panen padi yang digunakan oleh BPS menyebabkan perbedaan hasil produksi padi di Indonesia cukup signifikan. Model digunakan dalam peramalan ini yaitu model Autoregressive Integrated Moving Average (ARIMA). Data yang digunakan dalam penelitian ini merupakan data deret waktu tahunan produksi padi di Indonesia dari tahun 2000 hingga tahun 2021. Tujuan dari penelitian ini yaitu mengetahui peramalan produksi padi di Indonesia tahun 2022 dan 2023 menggunakan model regresi dengan ARIMA error dan mengetahui pengaruh perubahan metode penghitungan luas panen padi terhadap produksi padi di Indonesia. Model ARIMA pre-intervensi terbaik pada penelitian ini yaitu ARIMA (1,1,0). Model intervensi dibentuk melalui model regresi dengan ARIMA (1,1,0) error dengan peubah penjelas regressor yaitu peubah boneka Kerangka Sampel Area (KSA). Peramalan menggunakan model regresi dengan ARIMA (1,1,0) error pada produksi padi di Indonesia pada tahun 2022 dan 2023 berturut-turut sebesar 54.303.880 ton dan 54.250.800 ton. Uji validasi model regresi dengan ARIMA (1,1,0) error menggunakan nilai MAPE. Hasil menunjukkan nilai MAPE pada data latih dan data uji berturut-turut sebesar 2,684 dan 5,980. Hal tersebut menunjukkan model regresi dengan ARIMA (1,1,0) error sangat baik digunakan untuk peramalan. Produksi padi di Indonesia menggunakan metode KSA memiliki perbedaan nilai sebesar 207,477% lebih rendah dibandingkan dengan produksi padi di Indonesia menggunakan metode eye estimate.
       
      One of the largest agricultural commodities in Indonesia is rice. The existence of rice as a staple food must be maintained so that forecasting of rice production in Indonesia is carried out. Forecasting of rice production in Indonesia used intervention analysis because there was a change in the method of calculating rice harvest area used by BPS causing significant differences in rice production results in Indonesia. The model used in this forecasting was the Autoregressive Integrated Moving Average (ARIMA) model. The data used in this research was annual time series data for rice production in Indonesia from 2000 to 2021. The purpose of this research were to determine the forecast for rice production in Indonesia in 2022 and 2023 using a regression model with ARIMA errors and to determine the effect of changes in the method of calculating area rice harvest on rice production in Indonesia. The best pre-intervention ARIMA model in this research was ARIMA (1,1,0). The intervention model was formed through the regression model with ARIMA (1,1,0) error with the regressor exogenous variable, namely the Area Sampling Frame (ASF) dummy variable. Forecasting used a regression model with an ARIMA (1,1,0) error for rice production in Indonesia in 2022 and 2023 of 54.303.880 tonnes and 54.250.800 tonnes respectively. Regression model validation test with ARIMA (1,1,0) error used the MAPE value. The results showed that the MAPE values in the training data and test data were 2,684 and 5,980 respectively. This showed that the regression model with ARIMA (1,1,0) error was very good for forecasting. Rice production in Indonesia used the ASF method had a value difference of 207,477% lower than rice production in Indonesia used the eye estimate method.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115764
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository