View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Kontrol Optimum dan Analisis Efektivitas Biaya pada Model SVAIR Penyebaran COVID-19

      Thumbnail
      View/Open
      Cover (400.4Kb)
      Fullteks (1.624Mb)
      Lampiran (756.2Kb)
      Date
      2022
      Author
      Rahmawati, Dewi
      Bakhtiar, Toni
      Jaharuddin
      Metadata
      Show full item record
      Abstract
      Dalam karya ilmiah ini dibahas mengenai masalah pengendalian penyebaran COVID-19 yang dirumuskan dalam model SVAIR. Tiga variabel kontrol diterapkan ke dalam model, yaitu vaksinasi, isolasi virus, dan pengobatan. Prinsip maksimum Pontryagin diterapkan untuk mendapatkan kondisi optimalitas yang harus dipenuhi oleh variabel state, variabel adjoin, dan variabel kontrol. Metode Runge-Kutta orde-4 dan forward-backward sweep method digunakan untuk menentukan solusi numerik dari masalah nilai awal yang diberikan. Empat strategi dalam masalah kontrol dianalisis untuk menentukan strategi pengendalian yang optimal dan efektif dari segi biaya. Hasil dari penelitian ini menunjukkan bahwa strategi dengan tiga kontrol merupakan strategi yang paling optimal untuk menurunkan jumlah individu asimtomatik dan terinfeksi. Akan tetapi, strategi pengendalian dengan kontrol vaksinasi dan pengobatan merupakan strategi yang paling efektif dari segi biaya.
       
      This paper studies the controlling problem of COVID-19 transmission which formulated by the SVAIR model. Three control variables are introduced to the model, namely vaccination, viral isolation, and treatment. Pontryagin’s maximum principle is applied to derive the optimality conditions to be fulfilled by the control variables, state variables, and adjoin variables. The fourth-order Runge-Kutta algorithms and forward-backward sweep method are used in determining the numerical solution of the problem. Four strategies are being analyzed to determine the optimal and the most cost-effective strategy. The results of this study show that the application of strategy with three control variables can reduce the number of asymptomatic and infected individuals. However, strategy with vaccination and treatment as the control variables is the most cost-effective strategy.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115522
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository