View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Faktor yang Memengaruhi Anak Putus Sekolah di Provinsi Daerah Istimewa Yogyakarta Menggunakan Regresi Logistik Biner

      Thumbnail
      View/Open
      Cover (206.7Kb)
      Fullteks (2.138Mb)
      Lampiran (765.7Kb)
      Date
      2022
      Author
      Hasanah, Malikhatul
      Anisa, Rahma
      Alamudi, Aam
      Metadata
      Show full item record
      Abstract
      Anak putus sekolah merupakan anak yang tidak mampu menyelesaikan pendidikannya dan berhenti sekolah sebelum masa belajarnya berakhir sehingga belum memiliki tanda tamat belajar atau ijazah pada jenjang pendidikan tersebut. Provinsi DIY merupakan salah satu provinsi yang memiliki kasus putus sekolah dan mengalami peningkatan dari tahun 2018 sampai 2020. Untuk itu, penelitian ini bertujuan memodelkan kejadian anak putus sekolah di Provinsi DIY menggunakan regresi logistik biner dengan menerapkan metode SMOTE untuk menangani ketidakseimbangan data sehingga diketahui faktor-faktor yang memengaruhinya. Regresi logistik biner digunakan karena peubah respon bersifat biner (Y = 1 jika putus sekolah dan Y = 0 jika masih aktif bersekolah). Data penelitian menggunakan data sekunder hasil Survei Sosisal Ekonomi Nasional 2021 yang dilakukan oleh Badan Pusat Statistik wilayah Provinsi DIY. Hasil penelitian menunjukkan faktor yang berpengaruh, yaitu pendidikan kepala rumah tangga, rata-rata pengeluaran rumah tangga perkapita, status bekerja anak, dan status penerima PIP dengan ketepatan klasifikasi model berikut : akurasi 79,16%, F1-score 17,19%, dan AUC 83,22%.
       
      Dropout schools are children who are unable to complete their education and leave school before the end of their study period so that they do not obtain certificate from school or a diploma at that level of education. DIY Province is one of the provinces that has dropout cases increasing from 2018 to 2020. For this reason, this study aims to model the incidence of school dropouts in DIY Province using binary logistic regression by applying the SMOTE method to handle data imbalances so that the factors that influence it are known. Binary logistic regression was used because the response variables were binary (Y = 1 if they dropped out of school and Y = 0 if they were still in school). This research used secondary data from the 2021 National Socio-Economic Survey conducted by the Central Statistics Agency for the DIY Province. The results showed that the influencing factors were the education of the head of the household, the average household expenditure per capita, the child’s working status, and the status of PIP recipients with 79,16% accuracy, 17,19% F1-score, and 83,22% AUC.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/114125
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository