View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimasi-M Menggunakan Fungsi Pembobot Huber dan Bisquare Tukey

      Thumbnail
      View/Open
      Cover (863.3Kb)
      Date
      2022-08
      Author
      Laksana, Canta Bayu
      Ardana, Ngakan Komang Kutha
      Sumarno, Hadi
      Metadata
      Show full item record
      Abstract
      Keberadaan pencilan dapat memengaruhi pendugaan parameter dalam analisis regresi yang menggunakan metode kuadrat terkecil (MKT). Metode regresi kekar dapat digunakan sebagai alternatif pendekatan dari MKT. Penelitian ini dilakukan untuk mengkaji model regresi dengan metode jumlah kuadrat terkecil dan metode analisis regresi kekar yakni Estimasi-M dengan fungsi pembobot Huber dan Tukey melalui data bangkitan. Data bangkitan diperoleh dengan membangkitkan bilangan acak berdasarkan model regresi linear tanpa pencilan dan diberikan proporsi pencilan. Hasil yang diperoleh menunjukkan bahwa pembobot Tukey dan Huber pada data yang mengandung pencilan memiliki nilai Mean Square Error (MSE) yang lebih kecil dibandingkan dengan MKT. Hal ini menunjukkan bahwa pembobot Tukey dan Huber pada kasus penelitian ini bersifat lebih kekar daripada MKT. Dengan demikian metode Huber dan Tukey dapat digunakan untuk mengatasi gugus data yang mengandung pencilan.
       
      The existence of outliers can affect parameter estimation in regression analysis using the ordinary least squares method (OLS). The robust regression method can be used as an alternative approach to the OLS. This research was conducted to examine the regression model using the Least Squares method and the robust method with the Huber and Tukey weighting functions through the generation data. Generation data is obtained by generating random numbers based on a linear regression model with no outliers and given the proportion of outliers. The results obtained indicate that the Tukey and Huber weights on the data containing outliers have a smaller Mean Square Error (MSE) value than the OLS. This shows that the Tukey and Huber weights in the case of this study are more robust than the OLS. Thus, the Huber and Tukey method can be used to overcome clusters of data that contain outliers.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/114039
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository