View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan berbasis Jaringan untuk Pengklasifikasian Kanker Payudara berdasarkan Data Molekular

      Thumbnail
      View/Open
      Cover (860.2Kb)
      Fullteks (1.118Mb)
      Lampiran (557.0Kb)
      Date
      2022
      Author
      Abdulbaaqiy, Chamdan L
      Mushthofa
      Metadata
      Show full item record
      Abstract
      Sel kanker merupakan sel yang memiliki pertumbuhan tidak terkendali. Keberadaan sel kanker di dalam tubuh ditandai dengan adanya estrogen-reseptor- positif (ER+). Salah satu jenis kanker yang banyak diderita saat ini adalah kanker payudara. Sekitar 67% hasil tes kanker payudara menunjukkan adanya ER+ (estrogen-reseptor positif). Selanjutnya, penanganan kanker payudara ditentukan berdasarkan jenisnya, yaitu: Luminal A, Luminal B, basal-like, dan HER-2 enriched. Saat ini, biomarker yang umum digunakan untuk mendeteksi keberadaan sel kanker maupun jenis sel kankernya adalah PAM50. Namun, penelitian- penelitian terkait biomarker tetap terus dilakukan untuk meningkatkan hasil identifikasi. Penelitian ini menggunakan pendekatan berbasis jaringan (network) untuk menentukan biomarker potensial berdasarkan data Copy Number Alteration (CNA) dan ekspresi gen. Hasil pemilihan fitur tersebut dibandingkan dengan akurasi berbasis fitur PAM50 dari studi literatur. Dari hasil penelitian didapatkan bahwa fitur dari metode seleksi berbasis jaringan ini mampu menghasilkan performa yang sebanding dengan fitur PAM50 dan dapat menjadi alternatif untuk melakukan klasifikasi jenis kanker payudara.
       
      Cancer is a disease characterized by uncontrolled cell growth. One of the characteristics of uncontrolled growth is the presence of estrogen-receptor-positive (ER+). About 67% of breast cancer test results have ER+. Breast cancer profiles are divided into 4 subtypes, namely: Luminal A, Luminal B, basal-like, and HER-2 enriched. Each category has a different effect on adjuvant chemotherapy. In this study, a network-based approach was used to select features/molecular biomarkers that have the potential to assist modeling and classifying sub-types of breast cancer. The molecular features used are Copy Number Alteration (CNA) and gene expression. The feature selection results were compared with the PAM50 feature- based accuracy from the literature study. The results indicate that the features selected from this network-based approach can obtain a comparable performance w.r.t. the original PAM50 features, and can be used as an alternative to perform breast cancer subtyping.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/113092
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository