View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penggerombolan Provinsi di Indonesia Berdasarkan Kasus Kriminalitas Golongan Kejahatan Konvensional Menggunakan Metode K-Medoid

      Thumbnail
      View/Open
      Cover (914.9Kb)
      Fullteks (1.516Mb)
      Lampiran (649.6Kb)
      Date
      2022
      Author
      Azhari, Indah
      Sulvianti, Itasia Dina
      Angraini, Yenni
      Metadata
      Show full item record
      Abstract
      Tindakan kejahatan atau kriminalitas adalah suatu tindakan seseorang atau sekelompok orang yang melanggar hukum dan merugikan orang lain yang menjadi korban, baik dari segi materil (ekonomis) maupun psikologisnya. Kejahatan konvensional merupakan salah satu golongan kejahatan yang paling mendominasi di Indonesia. Banyaknya kasus kejahatan konvensional meningkat setiap tahunnya, maka perlu dilakukan penggerombolan provinsi di Indonesia berdasarkan kasus kriminalitas golongan kejahatan konvensional. Penggerombolan ini dilakukan agar jenis kejahatan konvensional yang terjadi di suatu provinsi dapat diidentifikasi. Hasil penelitian ini diharapkan dapat membantu pemerintah dan kepolisian dalam rangka menekan tingkat kejahatan konvensional (conventional crime rate). Secara eksplorasi diketahui bahwa ada beberapa provinsi yang menjadi pencilan pada beberapa jenis kejahatan, sehingga penggerombolannya menggunakan metode k-medoid dengan jarak Euclidean. Penentuan ukuran gerombol optimal dan evaluasi hasil penggerombolan dilakukan berdasarkan nilai koefisien silhouette, indeks Dunn dan indeks connectivity. Penelitian ini menghasilkan tiga gerombol dengan nilai koefisien silhouette 0,27; indeks Dunn sebesar 0,22 dan indeks connectivity sebesar 17,86.
       
      Crime is an act of a person or group of people who violate the law and harm other people who are victims, both in terms of material (economic) and psychological. Conventional crime is one of the most dominating crime groups in Indonesia. As the number of conventional crime cases increases every year, it is necessary to cluster provinces in Indonesia based on conventional criminal cases. This clustering is carried out so that the types of conventional crimes that occur in a province can be identified. The results of this study are expected to help the government and the police to reduce the conventional crime rate. Explorationally, it is known that several provinces are outliers in several types of crime. Hence, the clustering uses the k-medoid method with Euclidean distance. Determination of the optimal cluster size and evaluation of the clustering results are carried out based on the silhouette coefficient, Dunn index, and connectivity index. This study resulted in three clusters with a silhouette coefficient value of 0,27; Dunn index of 0,22 and connectivity index of 17,86.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112995
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository