View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Skew Circulant dengan Entri Bilangan Pell-Lucas

      Thumbnail
      View/Open
      Cover (997.4Kb)
      Fullteks (1.137Mb)
      Lampiran (486.5Kb)
      Date
      2022
      Author
      Auliasari, Devi
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks skew circulant adalah matriks persegi yang entrinya bergeser satu kolom secara berurutan ke kanan dan semua entri yang berada di bawah diagonal utama akan bernilai negatif, sehingga untuk mengetahui seluruh entri matriks skew circulant dapat dilihat dari salah satu baris dari matriks tersebut. Entri-entri pada matriks skew circulant dapat menggunakan entri dengan berbagai barisan bilangan, salah satunya adalah bilangan Pell-Lucas. Pada karya ilmiah ini diformulasikan determinan dan invers matriks skew circulant dengan entri bilangan Pell-Lucas. Pembuktian formulasi determinan matriks skew circulant dengan entri bilangan Pell-Lucas diperoleh dari penerapan serangkaian operasi baris dasar sehingga diperoleh matriks segitiga atas. Sedangkan, formulasi inversnya diperoleh dengan membuat matriks-matriks representasi dari hasil serangkaian operasi baris dasar dan operasi kolom dasar.
       
      Skew circulant matrix is a square matrix whose entries are shifted one column sequentially to the right and all entries below the main diagonal will be negative, so to find out all the entries of the skew circulant matrix can be seen from any row of the matrix. The entries in the skew circulant matrix can be filled in various sequences of numbers such as Pell-Lucas numbers. In this research, the determinant and inverse of the skew circulant matrix with Pell-Lucas numbers entries are formulated. The proof of the determinant formulation of the skew circulant matrix with Pell-Lucas numbers entries is explained by applying a series of elementary row operations to get the upper triangular matrix. While the proof of the inverse formulation is explained by constructing representational matrices of the results of the series of elementary row operations and elementary column operations.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112907
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository