View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Skew Circulant dengan Entri Barisan Aritmatika

      Thumbnail
      View/Open
      Cover (585.2Kb)
      Fulltext (962.7Kb)
      Lampiran (425.1Kb)
      Date
      2022
      Author
      Putra, Adriansyah Nanda
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks skew circulant adalah matriks persegi yang setiap entri dari baris sebelumnya bergeser satu kolom ke kanan pada baris berikutnya secara berurutan diikuti dengan perubahan tanda pada semua entri dibawah diagonal utama, sehingga untuk mengetahui entri matriks skew circulant dapat dilihat dari satu baris matriks tersebut. Entri-entri pada matriks skew circulant dapat diisi dengan berbagai entri yang membentuk barisan bilangan, salah satunya yaitu barisan aritmatika. Salah satu sifat yang dimiliki matriks skew circulant, adalah bahwa inversnya juga bersifat skew circulant. Pada karya ilmiah ini diformulasikan secara eksplisit determinan dan invers suatu matriks A yang skew circulant dengan entri baris pertama barisan aritmetika. Pembuktian formulasi det (A) dan A^(-1) diperoleh dari penerapan serangkaian operasi baris dasar dan operasi kolom dasar yang mengikuti struktur entri A sehingga A ekuivalen dengan matriks diagonal D yang entrinya juga berstruktur istimewa. Dalam hal ini, det (A) dirumuskan sebagai hasil kali semua unsur diagonal D; sedangkan A^(-1) = QD^(-1)P dengan P dan Q secara terurut merupakan matriks representasi sebagai hasil dari serangkaian operasi baris dan kolom dasar tersebut diatas.
       
      A Skew circulant matrix is a square matrix where each entry from the previous row shifts one column to the right in the next row sequentially followed by a change in sign to all the elements below the main diagonal, to find out the entries of the skew circulant can be seen from any row of the matrix. The entry of the skew circulant matrix can be filled in various types of a sequence of numbers, one of which is an arithmetic sequence. One of the properties of a skew circulant matrix is the inverse also in the form of a skew circulant. In this research, the determinant and the inverse of a skew circulant matrix A with the first row of an arithmetic sequence are formulated explicitly. The proof of the formulation of det (A) and A^(-1) are obtained by applying a series of elementary row operations and elementary column operations based on the structure of entry of A so that A is equivalent to a diagonal matrix D that also having special structure of the entry. In this case, det(A) is formulated as the product of all the diagonal elements of D; while A^(-1) = QD^(-1)P where P and Q are representation matrices as the result of the series of elementary row and column operation.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112895
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository