View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritme Support Vector Machine pada Citra Sentinel-2A untuk Klasifikasi Fase Pertumbuhan Bawang Putih

      Thumbnail
      View/Open
      Cover (1.652Mb)
      Fullteks (14.09Mb)
      Lampiran (1.576Mb)
      Date
      2022
      Author
      Maharani, Ervina
      Sitanggang, Imas Sukaesih
      Agmalaro, Muhammad Asyhar
      Metadata
      Show full item record
      Abstract
      Peningkatan kebutuhan konsumsi bawang putih (Allium sativum L.) di Indonesia tidak diimbangi dengan peningkatan jumlah produksinya. Pemerintah melakukan program ekspansi lahan penanaman bawang putih di Sembalun, Lombok Timur untuk mencapai swasembada bawang putih 2030-2045. Penelitian ini bertujuan untuk membuat model klasifikasi lahan bawang putih berdasarkan fase pertumbuhan bawang putih di Sembalun. Data yang digunakan adalah citra Sentinel-2A yang diakuisisi tanggal 1 Juli 2021 dan periode 31 Juli 2021. Algoritme yang digunakan adalah support vector machine (SVM) untuk klasifikasi data banyak kelas. Penelitian ini menerapkan model dengan dua skenario data yang memiliki perbedaan atribut. Model klasifikasi terbaik terdapat pada skenario kedua. Model ini memiliki akurasi terbaik sebesar 72,9% dengan nilai precision dan recall masing-masing sebesar 70,8% dan 71,4%. Berdasarkan evaluasi hasil klasifikasi, model SVM ini mampu mengidentifikasi fase pertumbuhan bawang putih di Sembalun.
       
      The increasing of need for consumption of garlic (Allium sativum L.) in Indonesia is not matched by an increase in the amount of production. The government carried out a program to expand the garlic planting area in Sembalun, East Lombok to achieve garlic self-sufficiency in 2030-2045. This study aims to create a model to classify the growth phase of garlic in Sembalun. The data used are Sentinel-2A imagery which was acquired on July 1st, 2021 and July 31st, 2021. The algorithm used is support vector machine (SVM) for multiclass classification data. This study applies a model with two data scenarios that have different attributes. The best classification model is found in the second scenario. This model has the best accuracy of 72.9% with precision and recall values of 70.8% and 71.4%, respectively. Based on the evaluation of the classification results, this SVM model able to identify the growth phase of garlic in Sembalun.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112712
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository