View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Ekstraksi Fitur Klinis Citra CT Scan Penderita COVID-19 Menggunakan Metode Texture Analysis

      Thumbnail
      View/Open
      Fullteks (3.200Mb)
      Cover (1.724Mb)
      Date
      2022
      Author
      Astuti, Annisa Widia
      Herdiyeni, Yeni
      Wulandari
      Metadata
      Show full item record
      Abstract
      Pada akhir tahun 2019, muncul penyakit COVID-19 yang disebabkan oleh coronavirus. Penyakit ini kemudian dinyatakan sebagai pandemi oleh WHO pada akhir bulan Januari 2020. Metode standar yang disarankan oleh panduan diagnosis COVID-19 adalah menggunakan RT-PCR dan analisis citra. Namun, kedua metode ini masih belum cukup optimal dikarenakan waktu yang dibutuhkan untuk melakukan identifikasi COVID-19 cukup lama, yaitu 4-6 jam menggunakan RTPCR dan 21,5 menit menggunakan analisis citra. Selain itu, sensitivitas yang dihasilkan menggunakan metode RT-PCR masih cukup rendah, yaitu 71%. Penelitian ini bertujuan untuk menerapkan algoritme texture analysis untuk melakukan identifikasi COVID-19 berbasiskan citra computed tomography. Fitur klinis yang didapatkan pada texture analysis kemudian diklasifikasikan menggunakan metode support vector machine. Hasil klasifikasi yang didapatkan cukup baik dengan nilai precision 86%, recall (sensitivitas) 99%, dan accuracy 91%. Diharapkan metode ini dapat membantu tenaga medis dalam melakukan proses identifikasi COVID-19.
       
      At the end of 2019, the COVID-19 disease caused by the coronavirus emerged. The disease was later declared a pandemic by WHO at the end of January 2020. The standard method recommended by the COVID-19 diagnosis guide is to use RT-PCR and image analysis. However, these two methods are still not optimal enough because the time needed to identify COVID-19 is quite long, i.e. 4-6 hours using RT-PCR and 21.5 minutes using image analysis. In addition, the sensitivity produced using the RT-PCR method is still quite low, i.e. 71%. This study aims to apply a texture analysis algorithm to identify COVID-19 based on computed tomography images. The clinical features obtained in the texture analysis are then classified using the support vector machine method. The classification results obtained are quite good with 86% precision, 99% recall (sensitivity), and 91% accuracy. It is hoped that this method can help medical personnel in carrying out the COVID-19 identification process.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112629
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository