View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Support Vector Regression (SVR) dengan Algoritma Grid Search dalam Memprediksi Harga Saham

      Thumbnail
      View/Open
      Cover (430.4Kb)
      Fullteks (2.551Mb)
      Lampiran (461.3Kb)
      Date
      2022
      Author
      Hermawan, Andri
      Mangku, I Wayan
      Ardana, Ngakan Komang Kutha
      Metadata
      Show full item record
      Abstract
      Dalam dunia investasi, saham merupakan salah satu instrumen pasar keuangan yang paling populer karena dapat memberikan keuntungan yang besar bagi para investor. Akan tetapi data harga saham bersifat tidak stasioner dan non linear, serta perubahan dari harga saham yang relatif cepat dari waktu ke waktu. Oleh karena itu, diperlukan metode yang mampu memprediksi pergerakan harga saham untuk membantu para investor dalam mengambil keputusan kapan sebaiknya saham dijual atau tetap dipertahankan. Tujuan dari penelitian ini adalah membuat model prediksi harga saham INDF dan MYOR serta melakukan prediksi satu periode selanjutnya pada kedua perusahaan tersebut dengan menggunakan metode Support Vector Regression dan Algoritma Grid Search. Hasil penelitian menunjukkan model prediksi terbaik untuk data saham INDF diperoleh nilai MAPE dan R^2 pada data testing berturut-turut sebesar 5.570% dan 79.9%, sedangkan untuk data saham MYOR diperoleh nilai MAPE dan R^2 pada data testing berturut-turut sebesar 2.954% dan 96%. Hasil penelitian juga menunjukkan prediksi harga saham INDF dan MYOR untuk satu periode selanjutnya (31 Desember 2021) berturut-turut sebesar Rp 6326.88/lembar dan Rp 2039.31/lembar.
       
      In the investment world, stocks are one of the most popular financial market instruments because they can provide large returns for investors. However, stock price data is non-stationary and non-linear, and changes in stock prices are relatively fast from time to time. Therefore, it is needed a method that is able to predict stock price movements to assist investors in making decisions about when stock prices should be sold or maintained. The purpose of this study is to introduce a stock price prediction model for INDF and MYOR and to predict one next period stock prices for the two companies using the Support Vector Regression method and the Grid Search Algorithm. The results showed that, the best prediction model for INDF stock data having MAPE and R^2 for the testing data are 5.570% and 79.9% respectively, while for the MYOR stock data, the MAPE and R^2 values obtained for the testing data were 2,954% and 96% respectively. The results also show that the stock price predictions for INDF and MYOR for one next period (December 31, 2021) are Rp. 6326.88/share and Rp. 2039.31/share, respectively.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112200
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository