View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Epidemi COVID-19 Menggunakan Pemodelan Dinamika SEIR

      Thumbnail
      View/Open
      Cover (298.2Kb)
      Fullteks (1.027Mb)
      Lampiran (445.2Kb)
      Date
      2022
      Author
      Andre, Irsyad Muhammad
      Kartono, Agus
      Pramudito, Sidikrubadi
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan memprediksi epidemi COVID-19 menggunakan model Susceptible-Exposed-Infectious-Recovered (SEIR) COVID-19 di beberapa negara seperti Indonesia, Singapura, Iran, dan Filipina. Model SEIR empat kompartemen digunakan untuk menduga parameter beta (β) sebagai tingkat infeksi, gamma (γ) sebagai tingkat pulih atau kematian, dan sigma (σ) sebagai kebalikan dari waktu laten rata-rata. Pendugaan parameter tersebut dilakukan melalui proses reduksi sekuensial matematis dari persamaan model pertumbuhan logistik sehingga model selalu diuji dan diterapkan pada data terbaru dari kasus COVID-19 yang terkonfirmasi sampai terbentuk grafik prediksi yang sesuai dengan data aktual. Penelitian menunjukan fitting model terhadap data aktual dengan nilai akurasi kurang dari 30% dan dibutuhkan penyesuaian parameter yang lebih tepat. Model SEIR dapat mendemonstrasikan dengan jelas karakteristik parameter yang dapat mencerminkan upaya pencegahan penyebaran wabah COVID-19. Wilayah yang dijadikan objek penelitian meliputi Singapura, Arab Saudi, Filipina, dan Indonesia.
       
      This study aims to predict the COVID-19 epidemic using the Susceptible-Exposed-Infectious-Recovered (SEIR) model of COVID-19 in several countries such as Indonesia, Singapore, Iran, and the Philippines. The four-compartment SEIR model was used to estimate the parameters beta (β) as the infection rate, gamma (γ) as the recovery or death rate, and sigma (σ) as the reciprocal of the mean latency time. The parameter estimation is carried out through a mathematical sequential reduction process from the logistic growth model equation so that the model is always tested and applied to the latest data from confirmed COVID-19 cases until a predictive graph is formed that matches the actual data. The research shows that the model fits the actual data with an accuracy value of less than 30% and more precise parameter adjustments are needed. The SEIR model can demonstrate the characteristics of parameters that can reflect efforts to prevent the spread of the COVID-19 outbreak. The areas used as research objects include Singapore, Saudi Arabia, the Philippines, and Indonesia.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112079
      Collections
      • UT - Physics [1236]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository