View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penyelesaian Capacitated Vehicle Routing Problem Menggunakan Algoritme Clarke-Wright dan Algoritme Genetika

      Thumbnail
      View/Open
      Cover (564.6Kb)
      Fullteks (1.967Mb)
      Lampiran (1.233Mb)
      Date
      2022
      Author
      Tanjung, Edon Primindo Firdaus
      Supriyo, Prapto Tri
      Silalahi, Bib Paruhum
      Metadata
      Show full item record
      Abstract
      Capacitated Vehicle Routing Problem (CVRP) merupakan salah satu variasi dari Vehicle Routing Problem (VRP) dengan kapasitas angkut kendaraan sebagai kendala yang dihadapi. Ada beberapa metode yang dapat digunakan untuk menyelesaikan permasalahan ini. Pada karya ilmiah ini, digunakan algoritme Clarke-Wright dan algoritme genetika untuk menyelesaikan CVRP. Pada tahap pertama algoritme Clarke-Wright digunakan untuk pembentukan grup dari sejumlah pelanggan berdasarkan konsep penghematan jarak. Tahap kedua digunakan algoritme genetika untuk penentuan rute pendistribusian di setiap grup yang sudah terbentuk. Model diimplementasikan pada pendistribusian roti. Hasil implementasi model memperlihatkan algoritme yang diusulkan lebih baik dibandingkan dengan algoritme greedy.
       
      Capacitated Vehicle Routing Problem (CVRP) is a variation of Vehicle Routing Problem (VRP) with the vehicle carrying capacity as an obstacle. There are several methods that can be used to solve this problem. In this scientific work, the Clarke-Wright algorithm and genetic algorithm are used to solve CVRP. In the first step, the Clarke-Wright algorithm is used to form groups of a number of customers based on the concept of distance saving. In the second step, genetic algorithms are used to determine the distribution route in each group that has been formed. The model is implemented in bread product delivery. The result of model implementation shows that the proposed algorithm is better than the greedy algorithm.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/111780
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository