View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Tingkat Kriminalitas di Indonesia Menggunakan Analisis Geographically Weighted Panel Regression

      Thumbnail
      View/Open
      Cover (1.387Mb)
      Fullteks (2.745Mb)
      Lampiran (1.270Mb)
      Date
      2022
      Author
      Febrianti, Endah
      Susetyo, Budi
      Silvianti, Pika
      Metadata
      Show full item record
      Abstract
      Kriminalitas merupakan salah satu masalah sosial ekonomi yang sampai saat ini belum terselesaikan di Indonesia. Meski Indonesia masuk kategori negara yang aman dikunjungi, kenyataannya masih banyak masyarakat Indonesia yang mengalami tindak kriminalitas. Penyelesaian masalah sosial ekonomi ini menjadi sangat penting karena menyangkut keamanan dan kenyamanan masyarakat. Penelitian ini bertujuan mengidentifikasi faktor-faktor yang memengaruhi tingkat kriminalitas di Indonesia dan menentukan model terbaik dari setiap provinsi dengan membandingkan antara model regresi data panel dan model Geographically Weighted Panel Regression (GWPR). Data penelitian ini terdiri atas 34 provinsi di Indonesia dari tahun 2016 sampai 2020. Analisis yang digunakan adalah analisis regresi data panel dan GWPR. Hasil analisis menunjukkan model adaptive kernel gaussian GWPR merupakan model terbaik dengan R^2 sebesar 69,89% dan AIC sebesar 167,4585. Pemodelan GWPR menghasilkan persamaan model dan peubah berpengaruh signifikan untuk setiap provinsi. Secara umum terdapat lima peubah yang berpengaruh signifikan terhadap tingkat kriminalitas, yaitu persentase penduduk miskin, tingkat pengangguran terbuka, Produk Domestik Regional Bruto atas dasar harga konstan per kapita, indeks pembangunan manusia, dan rata-rata lama sekolah.
       
      Crime is one of the socio-economic problems that Indonesia has not yet resolved. Although Indonesia is categorized as a safe country to visit, in reality, there are still many Indonesian people who experience crime. The resolution of this socio-economic problem is very important because it involves the safety and comfort of the community. This study aims to identify the factors that influence the crime rate in Indonesia and determine the best model for each province by comparing the panel data regression model and the Geographically Weighted Panel Regression (GWPR) model. This research data consists of 34 provinces in Indonesia from 2016 to 2020. The analysis used is panel data regression analysis and GWPR. The result is that the adaptive kernel gaussian GWPR is the best model with R^2 of 69,89% and AIC of 167,4585. The GWPR modeling produces model equations and significant variables for each province. In general, five variables have a significant effect on the crime rate, namely percentage of poor population, open unemployment rate, Gross Regional Domestic Product at the constant price per capita, human development index, and mean years of schooling.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/111509
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository