View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Kontrol Optimum SEAIR pada Penyebaran COVID-19 dengan Pengaruh Vaksinasi, Karantina, dan Pengobatan.

      Thumbnail
      View/Open
      Cover (445.2Kb)
      Fullteks (3.145Mb)
      Lampiran (1.237Mb)
      Date
      2021
      Author
      Fiorenza, Felia Aprina
      Bakhtiar, Toni
      Jaharuddin
      Metadata
      Show full item record
      Abstract
      Dalam karya ilmiah ini dibahas masalah pengendalian COVID-19 yang penyebarannya dirumuskan oleh model SEAIR. Model SEAIR melibatkan lima variabel state, yaitu jumlah individu rentan, terpapar, terinfeksi, asimtomatik, dan tanpa virus. Tiga variabel kontrol diperkenalkan ke dalam model, yaitu vaksinasi, karantina dan pengobatan. Prinsip maksimum Pontryagin diterapkan untuk mendapatkan kondisi optimalitas yang harus dipenuhi oleh variabel kontrol, variabel state, dan variabel adjoin. Metode Runge-Kutta orde-4 digunakan dalam menentukan solusi numerik dari masalah nilai awal dan masalah nilai akhir kontrol optimum. Tujuh skenario dianalisis untuk menentukan skenario paling optimal dan efektif dari segi biaya. Hasil dari penelitian ini menunjukkan bahwa penerapan skenario dengan tiga kontrol dapat menurunkan jumlah individu terpapar, terinfeksi dan asimtomatik sehingga mengoptimumkan jumlah individu tanpa virus. Namun, skenario dengan kontrol variabel karantina paling efektif dari segi biaya.
       
      In this scientific paper the problem of controlling COVID-19 whose spread is formulated by the SEAIR model is discussed. The SEAIR model involves five state variables, namely the number of susceptible, exposed, infected, asymptomatic, and removed individuals. Three control variables are introduced to the model, namely vaccination, quarantine and treatment. Pontryagin's maximum principle is applied to derive the optimality conditions to be fulfilled by the control variables, state variables, and adjoin variables. The fourth order Runge-Kutta method is utilized in determining the numerical solution of the initial value and terminal value problems for optimal control. The results of this study show that the application of scenario with three control variables can reduce the number of exposed, infected, asymptomatic individuals so as to maximize the number of removed individuals. However, the scenario with control variable quarantine is the most cost-effective scenario.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/109361
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository