View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan Model Epidemi pada Penyebaran Virus Hepatitis B dengan Vaksinasi

      Thumbnail
      View/Open
      Cover (379.0Kb)
      Fullteks (14.58Mb)
      Lampiran (2.943Mb)
      Date
      2021-09
      Author
      Merdiani, Murni Ayu
      Jaharuddin
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Virus hepatitis B adalah penyebab penyakit hepatitis B. Model epidemi penyebaran virus hepatitis B dengan vaksinasi yang ditinjau adalah model SIR (Susceptible, Infected, Recovered). Penelitian ini bertujuan untuk merekonstruksi model, menentukan titik tetap dan bilangan reproduksi dasar, menganalisis kestabilan titik tetap dan sensitivitas, serta melakukan simulasi numerik. Bilangan reproduksi dasar diperoleh dengan menggunakan the next generation matrix. Simulasi numerik dilakukan dengan menggunakan software Mathematica 12.0 untuk menunjukkan pengaruh setiap parameter terhadap bilangan reproduksi dasar. Penurunan tingkat penularan mengakibatkan penurunan bilangan reproduksi dasar. Kenaikan tingkat pemulihan dan vaksinasi mengakibatkan penurunan bilangan reproduksi dasar. Perubahan bilangan reproduksi dasar berpengaruh pada kestabilan sistem.
       
      Hepatitis B virus is the cause of hepatitis B disease. The epidemic model of the spread hepatitis B virus with vaccination is the SIR (Susceptible, Infected, Recovered) model. The purpose of this research is to reconstruct the model, determining the fixed point and the basic reproduction number, analysing the stability of the fixed point and sensitivity, and perform numerical simulations. The basic reproduction number is obtained using the next generation matrix. Numerical simulations are carried out using Mathematica 12.0 software to show the effect of each parameter on the basic reproduction number. The decrease in the transmission level implies the decrease in the basic reproduction number. The increase in the rate of recovery and vaccination implies the decrease in the basic reproduction number. The changes in the basic reproduction affect the stability of the system.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/109122
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository