View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Circulant dengan Entri Bilangan Pell

      Thumbnail
      View/Open
      Cover (850.9Kb)
      Fullteks (1.161Mb)
      Lampiran (487.5Kb)
      Date
      2021
      Author
      Alfiana, Nadia
      Mas’oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks circulant adalah matriks yang entrinya bergeser satu kolom ke kanan secara berurutan, sehingga untuk mengetahui seluruh entrinya dapat dilihat hanya dari kolom pertama. Salah satu sifat yang dimiliki matriks circulant adalah bahwa inversnya juga berupa circulant. Entri-entri matriks circulant dapat menggunakan entri berbagai bilangan, salah satunya adalah bilangan Pell. Pada karya ilmiah ini, determinan dan invers matriks circulant dengan entri bilangan Pell diformulasikan. Pembuktian formulasi determinan matriks circulant dengan entri bilangan Pell dilakukan berdasarkan serangkaian operasi baris dasar sehingga diperoleh mariks segitiga atas. Sedangkan pembuktian formulasi inversnya berlandaskan sifat-sifat ekuivalensi dari hasil kombinasi operasi baris dasar atau operasi kolom dasar.
       
      A circulant matrix is a matrix whose entries are shifted one column to the right in sequence, so to find out all the entries can be seen only from the first column. One of the properties of a circulant matrix is that its inverse is also a circulant. Circulant matrix entries can use entries of various numbers, one of which is Pell's number. In this scientific paper, the determinant and the inverse of the circulant matrix with Pell number entries formulated. Proof of the determinant formulation matrix circulant with Pell number entries performed based on a series of base row operations so that the upper triangular matrix is obtained. While the proof of the inverse formulation based on the equivalence properties of the result combination of base row operations or base column operations.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/108765
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository