View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Interaksi Senyawa-Protein untuk Drug Repurposing Anti COVID-19 Menggunakan Metode Convolutional Neural Network

      Thumbnail
      View/Open
      Cover (437.4Kb)
      Fullteks (2.443Mb)
      Lampiran (99.65Kb)
      Date
      2021
      Author
      Safitri, Bella Anggita
      Wijaya, Sony Hartono
      Metadata
      Show full item record
      Abstract
      COVID-19 menyebabkan masalah kesehatan seperti demam, batuk kering, gangguan pernapasan, dan bahkan kematian. Penemuan obat secara tradisional memerlukan banyak sumber daya, sehingga pendekatan komputasional menjadi salah satu pendekatan yang efisien untuk screening senyawa potensial melalui prediksi interaksi senyawa-protein. Model deep learning yang digunakan pada penelitian ini adalah Convolutional Neural Network (CNN). Hasil pemodelan CNN dibandingkan dengan model Support Vector Machine dan Naive Bayes dengan representasi fitur protein Amino Acid Composition (AAC) dan Dipeptide Composition (DC). Selain itu, juga diamati pengaruh penggunaan seleksi fitur pada model. Selanjutnya, kinerja dari metode untuk memprediksi interaksi senyawa dan protein diukur dengan menggunakan akurasi, precision, recall, F-measure, dan AUROC. Hasil penelitian menunjukkan bahwa pemodelan dengan representasi fitur protein DC lebih baik dibandingkan dengan AAC. Pemodelan interaksi senyawa-protein menggunakan PubChem fingerprint sebagai representasi senyawa dan DC sebagai representasi protein pada CNN dengan seleksi fitur ANOVA menghasilkan kinerja terbaik dengan nilai akurasi sebesar 0.9475, recall 0.9687, precision 0.9679, F-measure 0.9683, dan AUROC 0.9751.
       
      COVID-19 is a disease that causes health problems. Traditional drug discovery requires many resources. Thus, the computational approach is one of the approaches that can be employed to screen potential compounds through the prediction of compound-protein interactions. The deep learning model used in this study is Convolutional Neural Network (CNN). The results of the CNN model were compared to Support Vector Machine (SVM) and Naive Bayes (NB) with representations of proteins using Amino Acid Composition (AAC) and Dipeptide Composition (DC). We also examined the effect of the feature selection approach using ANOVA. The results were evaluated in terms of accuracy, precision, recall, F-measure, and AUROC. Results showed that modeling with a representation of DC protein features was better than AAC. Prediction of compound-protein interaction modeling using PubChem fingerprint as a compound representation and DC as protein representation on CNN using ANOVA feature selection resulted in the best performance with an accuracy value of 0.9475, recall 0.9687, precision 0.9679, F-measure 0.9683, and AUROC 0.9751.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/108557
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository