Pemanfaatan Teknik Augmentasi Data untuk Deteksi Objek Kelainan Daun Tanaman Melon Menggunakan Single Shot Multibox Detector
Abstract
Identifikasi penyakit tanaman sangat penting dilakukan untuk menentukan penanganan yang tepat. Proses identifikasi penyakit tanaman secara tradisional dilakukan oleh seorang ahli dengan memeriksa secara manual di lokasi sehingga biayanya mahal, lambat, dan sulit terjangkau oleh petani. Sistem deteksi penyakit tanaman secara otomatis menggunakan kamera pemantau dapat menjadi solusi yang cukup menjanjikan. Pembuatan model sistem deteksi otomatis dapat dilakukan dengan pendekatan deep learning. Namun, metode deep learning membutuhkan ketersediaan data dalam jumlah besar untuk menghindari overfitting. Penelitian ini bertujuan untuk mengimplementasikan teknik augmentasi pada pembuatan model deteksi objek kelainan daun pada citra tanaman melon sehingga dapat mengatasi keterbatasan data dan dapat meningkatkan akurasi. Model deteksi dibuat menggunakan metode Single Shot Multibox Detector (SSD) dengan backbone MobileNetV2 dan InceptionV2. Teknik augmentasi yang digunakan adalah horizontal flipping, vertical flipping, dan rotasi 90 derajat. Dengan menggunakan augmentasi data, SSD MobileNetV2 menghasilkan nilai mAP tertinggi sebesar 33.65% sedangkan SSD InceptionV2 mencapai 27.74%. Nilai ini lebih tinggi dari hasil model tanpa augmentasi data, yaitu mAP SSD MobileNetV2 sebesar 27.63% dan mAP SSD InceptionV2 sebesar 24.53%. Pada kedua percobaan, SSD MobileNetV2 menghasilkan nilai mAP yang lebih tinggi sehingga lebih direkomendasikan untuk deteksi objek secara real-time. Identification of plant diseases is essential to determine the proper treatment. The traditional plant disease identification process was done by an expert by manually checking plants on site so that it is costly, slow, and challenging to reach by farmers. An automatic plant disease detection system using a surveillance camera can be a promising solution. Modeling of automatic detection systems can be done using a deep learning approach. However, the deep learning method requires the availability of large amounts of data to avoid overfitting. This study aims to implement data augmentation techniques to create a model for object detection of leaf abnormalities in melon plant images to overcome data limitations and increase accuracy. The detection model is made using the Single Shot Multibox Detector (SSD) method with MobileNetV2 and InceptionV2 backbones. Augmentation techniques used are horizontal flipping, vertical flipping, and 90 degrees rotation. By using data augmentation, the SSD MobileNetV2 produced the highest mAP value of 33.65%, while the SSD InceptionV2 reached 27.74%. This value is higher than the result without data augmentation, with mAP of SSD MobileNetV2 is 27.63% and mAP of SSD InceptionV2 is 24.53%. In both experiments, the SSD MobileNetV2 produces a higher mAP value, so it is more recommended for real-time object detection.
Collections
- UT - Computer Science [2330]