View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi Analisis Komponen Utama dengan Paradigma Pencilan Sel

      Thumbnail
      View/Open
      BAB I (322.8Kb)
      BAB II (869.4Kb)
      BAB III (321.9Kb)
      BAB IV (3.026Mb)
      BAB V (759.8Kb)
      Abstrak (172.2Kb)
      Berkas utuh (10.26Mb)
      Date
      2021
      Author
      Sander, Alex
      Ardana, Ngakan Komang Kutha
      Sumarno, Hadi
      Metadata
      Show full item record
      Abstract
      Data berukuran besar merupakan salah satu ciri penting dalam mengolah informasi pada era modern ini. Istilah "Big Data" mengacu pada kumpulan data yang memiliki ukuran sangat besar, rumit, dan tidak dapat dikelola dengan cara yang biasa. Saat ini pengolahan data semakin bervariasi dan memerlukan penanganan khusus, baik dalam proses analisis maupun visualisasi. Analisis Komponen Utama adalah metode statistika yang mampu mereduksi dimensi data dari kumpulan variabel yang saling berkorelasi menjadi kumpulan variabel baru yang kecil dengan tetap mempertahankan sebanyak mungkin keragaman data. Proses analisis ini bertujuan untuk mereduksi dimensi data menggunakan Analisis Komponen Utama Klasik (AKU-K) dan Missingness and Cellwise and Rowwise Outliers PCA (MacroPCA, AKU-Macro) yang robust terhadap pencilan. Karya ilmiah ini difokuskan pada pencilan sel menggunakan metode Detect Deviating Cells (DDC) - sebuah metode yang dapat mengidentifikasi pencilan sel pada suatu matriks data. Berdasarkan ukuran kesesuaian dalam menganalisis komponen utama, AKU-Macro lebih baik dibandingkan AKU-K. Selain itu berdasarkan plot tebaran distance score dan orthogonal distance, AKU-Macro lebih efektif dalam menangani pencilan dibandingkan dengan AKU-K.
       
      Large data is one of the important characteristics in processing information in this modern era. The term "Big Data" refers to datasets that are very large, complex, and cannot be managed in the usual way. Currently, data processing is increasingly varied and requires special handling, both in the analysis and visualization processes. Principal Component Analysis is a statistical method that is able to reduce the dimensions of data from a collection of correlated variables into a new, small set of variables while maintaining as much variance as possible. This analysis aims to reduce the dimensions of the data using Classical Principal Component Analysis (classical PCA) and Missingness and Cellwise and Rowwise Outlier PCA (MacroPCA). This scientific work is focused on cellwise outliers using the Detect Deviating Cells (DDC) method - a method that can identify cellwise outliers in a data matrix. Based on the suitability measure in analyzing the main components, Macro PCA is better than classical PCA. In addition, based on the scatter plot of score distance and orthogonal distance, Macro PCA is more effective in dealing with outliers than classical PCA.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107923
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository