View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Karakterisasi Model Regresi Indikator Global terhadap Pola Bersama Sebaran Hotspot dan Prediksi Indikator Iklim di Kalimantan

      Thumbnail
      View/Open
      Cover (2.018Mb)
      Fullteks (8.350Mb)
      Lampiran (2.004Mb)
      Date
      2021
      Author
      Rohimahastuti, Fadillah
      Nurdiati, Sri
      Julianto, Mochamad Tito
      Metadata
      Show full item record
      Abstract
      Fenomena global seperti El Nino Southern Oscillation (ENSO) dan Indian Ocean Dipole (IOD) dapat meningkatkan risiko kebakaran hutan dan lahan (Karhutla). Salah satu indikator yang dapat digunakan untuk mengidentifikasi Karhutla adalah hotspot. Penelitian ini bertujuan mengembangkan model regresi indikator global terhadap pola bersama sebaran hotspot dan prediksi indikator iklim dan menganalisis pengaruh fenomena ENSO dan IOD terhadap hotspot di Kalimantan dengan menggunakan data bulanan dari 2001-2020. Metode optimasi digunakan untuk memaksimalkan koefisien determinasi model, sedangkan Principal Component Regression (PCR) digunakan untuk membuat model regresi. Model prediksi yang dihasilkan dapat digunakan untuk memprediksi hotspot pada bulan berikutnya menggunakan informasi masing-masing indikator dalam 2 bulan terakhir. Validasi model menggunakan 3 tahun data sebagai testing set dan 17 tahun sebagai training set menghasilkan model regresi yang memberikan koefisien determinasi lebih dari 0,5 pada data testing sebesar 31,58%. Kontribusi tertinggi terhadap parahnya musim kemarau dan jumlah hotspot di Kalimantan dipengaruhi oleh fenomena ENSO yang disusul dengan IOD.
       
      Global phenomena such as the El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) can increase the risk of forest and land fires (Karhutla). One indicator that can be used to identify forest and land fires is a hotspot. This study aims to develop a global indicator regression model on the joint pattern of hotspot distribution and climate indicator prediction and analyze ENSO and IOD phenomena on hotspots in Kalimantan using monthly data from 2001-2020. The optimization method is employed to maximize the coefficient of model determination and the Principal Component Regression (PCR) is employed to create a regression model. The result of this study can be applied to predict hotspots in the following month using the information of each indicator in the last 2 months. The model validation using 3 years of data as a testing set and 17 years as a training set produces a regression model that provides a coefficient of determination of more than 0,5 on the testing data of 31,58%. The highest contribution to the severity of the dry season and the number of hotspots in Kalimantan is influenced by the ENSO phenomenon followed by IOD.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107382
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository